
Using Cost Benefit Analyses to Develop

Software Process Improvement (SPI)

Strategies

A DACS State-of-the-Art Report

Contract Number SP0700-98-D-4000

(Data & Analysis Center for Software)

Prepared for:

Air Force Research Laboratory -

Information Directorate (AFRL/IFED)

32 Brooks Road

Rome, NY 13441-4505

Prepared by:

David F. Rico
ITT Industries

Griffiss Business & Technology Park

775 Daedalian Drive

Rome, NY 13441-4909

September 18, 2000

Unclassified and Unlimited Distribution

The Data & Analysis Center for Software (DACS) is a Department of Defense (DoD) Information Analysis
Center (IAC), administratively managed by the Defense Technical Information Center (DTIC) under the
DoD IAC Program. The DACS is technically managed by Air Force Research Laboratory Information
Directorate (AFRL/IF) Rome Research Site. ITT Industries - Advanced Engineering & Sciences Division
manages and operates the DACS, serving as a source for current, readily available data and information
concerning software engineering and software technology.

Data & Analysis Center for Software (DACS)

P.O. Box 1400

Rome, NY 13442-1400

(800) 214-7921, (315) 334-4964 - Fax

cust-laisn@dacs.dtic.mil

http://iac.dtic.mil/dacs

mailto:cust-laisn@dacs.dtic.mil
http://iac.dtic.mil/dacs/
http://iac.dtic.mil/dacs/

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection is estimated to average 1 hour per response including the time for reviewing instructions, searching existing data sources, gathering and maintaining the

data needed and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions

for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports. 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to

the Office of Management and Budget, Paperwork Reduction Project, (0704-0188). Washington, DC 20503.

 1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

 6. AUTHORS

 7. PERFORMING ORGANIZATIONS NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER

14. SUBJECT TERMS 15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF

OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT

Unclassified Unclassified Unclassified UL

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

NSN 7540-901-280-5500 Standard Form 298 (Rev 2-89)

September 18, 2000 N/A

Using Cost Benefit Analyses to Develop Software Process SP0700-98-D-4000
Improvement (SPI) Strategies

David F. Rico
ITT Industries, Advanced Engineering & Sciences Division

ITT Industries
775 Daedalian Drive N/A
Rome, NY 13441-4909

Defense Technical Information Center (DTIC)/ AI
8725 John J. Kingman Rd., STE 0944, Ft. Belvoir, VA 22060
and Air Force Research Lab/IFTD N/A
525 Brooks Rd., Rome, NY 13440

Available from: Data & Analysis Center for Software (DACS)
775 Daedalian Drive, Rome, NY 13441-4909

Approved for public release, distribution unlimited UL

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

The purpose of this State of the Art Report (SOAR) is to organize the costs and
benefits of Software Process Improvement (SPI) strategies, methods, approaches, and
alternatives into a form and methodology that enables software managers to identify
and select the SPI strategies that are most closely aligned with their business,
organizational, and technical goals and objectives. This report examines a cross
section of popular SPI methods and approaches, prioritizes them by their costs and
benefits, classify and group them according to their characteristics, and guide
software managers and developers toward a small collection of highly effective SPI
strategies.

Software Process Improvement, SPI, Return on Investment, ROI 196

N/A

Table of Contents

1. Introduction.. 9

1a. General Background .. 9

1b. Statement of the Problem .. 10

1c. Hypotheses .. 11

1d. Delimitations ... 11

1e. Definition of Terms.. 12

1f. Significance ... 13

1g. Organization .. 14

2. Literature Review... 15

2a. Definitions ... 15

2b. Strategies and Alternatives .. 18

2c. Metrics and Models ... 63

2d. Costs and Benefits ... 81

2e. Comparative Analyses ... 94

3. Methodology .. 113

3a. Cost and Benefit Criteria ... 115

3b. Alternative Strategies .. 121

3c. Defect Removal Model .. 129

3d. Return-on-Investment Model .. 138

3e. Break Even Point Model ... 149

3f. Cost and Benefit Model ... 154

4. Data Analysis ... 161

4a. Cost/Benefit-Based Comparison of Alternatives 162

4b. Benefit-Based Comparison of Alternatives ... 168

4c. Benefit-Based Comparison of Worst Alternatives 170

4d. Benefit-Based Comparison of Poorest Alternatives 172

4e. Cost/Benefit-Based Comparison of Categories 173

4f. Benefit-Based Comparison of Categories ... 177

5. Conclusion ... 182

5a. Results of Data Analysis .. 183

5b. Outcome of Hypotheses... 185

5c. Reliability and Validity .. 186

5d. Future Research ... 187

5e. Recommendations ... 188

Appendix A: References .. 189

Acknowledgments: The DACS would like to thank Lon R. Dean for his editing and Philip King of ITT

Industries for his and cover design work in producing this report.

Figures

Figure 1. Process Value Analysis (PVA) .. 17

Figure 2. Software Process Improvement (SPI) Strategies from Survey............................. 18

Figure 3. Further Software Process Improvement (SPI) Strategy Classification 19

Figure 4. Ogden Air Logistics Center Software Process Improvement (SPI) Journey......... 23

Figure 5. Clean Room Methodology .. 31

Figure 6. IBM Research Triangle Park Defect Prevention Process 37

Figure 7. IBM’s Orthogonal Defect Classification (ODC) Process 38

Figure 8. Family of Seven Personal Software Process (PSP) Life-cycles 40

Figure 9. Personal Software Process (PSP) 3-Cyclic Development Life-cycle 41

Figure 10. Software Inspection Process .. 43

Figure 11. Citation Frequency of Metrics for Software Process Improvement (SPI) 65

Figure 12. SEI CMM Maturity Profile (domestic) ... 82

Figure 13. Hewlett Packard Annual Software Inspection Process Savings 84

Figure 14. SEI Personal Software Process (PSP) Results .. 84

Figure 15. Motorola CMM-based Software Process Improvement (SPI) 86

Figure 16. Raytheon CMM-based Software Productivity Improvements 87

Figure 17. DACS Software Process Improvement (SPI) model .. 87

Figure 18. IBM Rayleigh Life-cycle Reliability Model Accuracy ... 88

Figure 19. IBM Rayleigh Life-cycle Reliability Model ... 89

Figure 20. SEI Software Process Improvement (SPI) survey of 13 organizations 90

Figure 21. NEC (Tokyo, Japan) Defect Prevention Results ... 91

Figure 22. IBM Defect Prevention Results ... 91

Figure 23. Shareholder Value (as a result of process improvement) 93

Figure 24. SEI Capability Maturity Model for Software (CMM) .. 95

Figure 25. DACS Software Process Improvement (SPI) Study rRsults 99

Figure 26. Software Process Improvement (SPI) Strategy Empirical Analytical Model 105

Figure 27. Methodology for Evaluating and Selecting Costs and Benefits 113

Figure 28. Defect Removal Model Theory ... 130

Figure 29. Humphrey’s Defect Removal Model (Part II) .. 137

Figure 30. Software Inspection Process Cost Model Architecture 141

Figure 31. Custom Software Process Improvement (SPI) Break Even Model 147

Figure 32. Test Versus Ad Hoc Graphical Break Even Analysis .. 150

Figure 33. Inspection Versus Ad Hoc Graphical Break Even Analysis 151

Figure 34. PSP Versus Ad Hoc Graphical Break Even Analysis .. 152

Figure 35. Inspection Versus Ad Hoc Graphical Break Even Analysis 152

Figure 36. PSP Versus Test Graphical Break Even Analysis ... 153

Figure 37. PSP Versus Inspection Graphical Break Even Analysis 153

Figure 38. Normalized Costs and Benefits of Eight Strategies .. 162

Figure 39. Average Costs and Benefits of Eight Strategies ... 162

Figure 40. Breakeven Hours Comparison of Eight Strategies ... 163

Figure 41. Training Hours/Person Comparison of Eight Strategies 163

Figure 42. Training Cost/Person Comparison of Eight Strategies 164

Figure 43. Effort (hours) Comparison of Eight Strategies .. 165

Figure 44. Cycle Time Reduction Comparison of Eight Strategies 165

Figure 45. Productivity Increase Comparison of Eight Strategies 166

Figure 46. Quality increase Comparison of Eight Strategies ... 167

Figure 47. Return-on-Investment Comparison of Eight Strategies 167

Figure 48. Normalized Benefits of Eight Strategies ... 169

Figure 49. Average Benefits of Eight Strategies .. 169

Figure 50. Normalized Benefits of Worst Strategies .. 170

Figure 51. Average Benefits of Worst Strategies ... 171

Figure 52. Normalized Benefits of Poorest Strategies ... 172

Figure 53. Average Benefits of Poorest Strategies .. 173

Figure 54. Normalized Costs and Benefits of Categories .. 175

Figure 55. Average Costs and Benefits of Categories ... 176

Figure 56. Normalized Benefits of Categories ... 177

Figure 57. Average Benefits of Categories .. 178

Figure 58. Normalized Benefits of Worst Categories (part I) ... 179

Figure 59. Average Benefits of Worst Categories (part I) .. 179

Figure 60. Normalized Benefits of Worst Categories (part II) .. 180

Figure 61. Average Benefits of Worst Categories (part II) ... 181

 Tables

Table 1. Survey of Software Process Improvement (SPI) Definitions in Literature 16

Table 2. Defect Prevention and Appraisal Processes .. 20

Table 3. U.S. West's Software Process Improvement (SPI) Principles 21

Table 4. SEI Capability Maturity Model for Software (CMM) .. 22

Table 5. Boeing Defense and Space Software Process Improvement (SPI) Journey........ 24

Table 6. SPR Software Process Improvement (SPI) Model ... 25

Table 7. Motorola Software Process Improvement (SPI) Strategy 26

Table 8. Raytheon Software Process Improvement (SPI) Strategies 27

Table 9. DACS Software Process Improvement (SPI) Strategies 28

Table 10. Software Reusability and Domain Analysis Methods ... 29

Table 11. Hewlett Packard Software Reuse Process ... 30

Table 12. IBM Rochester Organizational Process Improvement Strategy 32

Table 13. IBM Rochester Software Process Improvement (SPI) Strategy 33

Table 14. IBM Rochester AS/400 Software Quality Management System (SQMS) 34

Table 15. IBM Rochester AS/400 Software Quality and Reliability Metrics and Models 35

Table 16. IBM Rochester, University of Maryland, and NASA GSFC Quality Survey 36

Table 17. IBM Houston NASA Space Shuttle Software Process Improvement (SPI) 39

Table 18. Hewlett Packard Divisional Software Process Improvement (SPI) Strategy 42

Table 19. Hewlett Packard Corporate Software Process Improvement (SPI) Strategies 43

Table 20. Hitachi, Toshiba, NEC, and Fujitsu Software Process Improvement (SPI) 44

Table 21. Microsoft Software Process Improvement (SPI) Strategies 45

Table 22. Microsoft Synch-and-Stabilize Software Development Approach 46

Table 23. Netscape Principles for Competing on Internet Time ... 47

Table 24. ISO 900, Malcolm Baldrige and Capability Maturity Model Elements 48

Table 25. Organizational Improvement Strategies ... 49

Table 26. Steve McConnell's Software Best Practices ... 50

Table 27. IBM Santa Teresa Software Process Improvement (SPI) Strategies 51

Table 28. SEI-Identified Software Process Improvement (SPI) Strategies 52

Table 29. Process Innovation Strategies .. 53

Table 30. Process Innovation Strategies Mapped to Organizational Functions 54

Table 31. Process Innovation Strategies Mapped to Organizational Functions 55

Table 32. Resistance Embracement Organizational Change Strategy 56

Table 33. Reengineering and Total Quality Management (TQM) Strategies 57

Table 34. International Quality Management Strategies .. 57

Table 35. Three Phases of Business Transformation... 59

Table 36. Internet Technologies for Organizational Change .. 60

Table 37. Digital Strategy for Organizational Change .. 61

Table 38. Profit Patterns for Organizational Performance Improvement 62

Table 39. Survey of Metrics for Software Process Improvement (SPI)97 63

Table 40. Reclassification of 487 Metrics for Software Process Improvement (SPI) 64

Table 41. Operating Parameters and Metrics for Business Transformation 66

Table 42. Typical Costs for Measuring Quality of Conformance .. 67

Table 43. IBM Rochester Software Process Improvement (SPI) Metrics 68

Table 44. Hewlett Packard Software Process Improvement (SPI) Metrics 69

Table 45. Motorola Software Process Improvement (SPI) Metrics 70

Table 46. AT&T Software Inspection Process (SPI) Metrics .. 71

Table 47. SEI Software Process Improvement (SPI) Metrics ... 72

Table 48. SEI CMM-Based Software Process Improvement (SPI) Metrics 73

Table 49. DACS Software Process Improvement (SPI) Metrics ... 74

Table 50. Personal Software Process (PSP) Metrics ... 75

Table 51. SPR Software Process Improvement (SPI) Metrics ... 76

Table 52. Software Process Improvement (SPI) Metrics for SPC .. 77

Table 53. NASA GSFC Software Process Improvement (SPI) Metrics 78

Table 54. Defect Density Metrics for Software Process Improvement (SPI) 78

Table 55. Universal/Structural Design Metrics for SPI ... 79

Table 56. Software Inspection Process Metrics for SPI ... 80

Table 57. Survey of SPI Costs and Benefits .. 81

Table 58. Motorola Personal Software Process (PSP) Benefits ... 85

Table 59. Hewlett Packard Software Reuse Costs and Benefits .. 92

Table 60. Clean Room Methodology Benefits .. 93

Table 61. Survey of SPI Comparative Analyses ... 94

Table 62. SEI Comparison of SPI Methods .. 96

Table 63. Construx Comparison of SPI Methods ... 97

Table 64. HP Comparison of SPI Methods ... 98

Table 65. PSP, Software Inspection Process, and Testing Comparison............................... 99

Table 66. Clean Room, Software Inspection Process, and Walkthrough Comparison....... 100

Table 67. Comparison of Reviews, Software Inspection Process, and Walkthroughs 102

Table 68. Business Process Reengineering (BPR) Contingency Model 103

Table 69. Malcolm Baldrige, ISO 9001, and SEI CMM Comparison 104

Table 70. Comparison of Enterprise Quality Management Models 104

Table 71. SPR Comparison of SPI Methods .. 106

Table 72. Software Capability Evaluations (SCEs) and ISO 9001 Registration Audits 107

Table 73. Comparison of SPRM, SPICE, CMM, BOOTSTRAP, and ISO 9000 108

Table 74. Comparison of BOOTSTRAP, ISO 9000, CMM, and SPICE 108

Table 75. Worldwide Survey of Software Best Practices ... 110

Table 76. Construx Comparison of Software Development Life Cycles 111

Table 77. Criteria for Evaluating Software Process Improvement (SPI) Alternatives 115

Table 78. Alternatives for Evaluating Costs and Benefits ... 121

Table 79. Humphrey's Defect Removal Model (Part I) ... 130

Table 80. Sulack's Defect Removal Model ... 131

Table 81. Gilb's Defect Removal Model ... 132

Table 82. Kan's Defect Removal Model ... 132

Table 83. McGibbon's Defect Removal Model (Part I) ... 133

Table 84. McGibbon's Defect Removal Model (Part II) .. 135

Table 85. Ferguson's Defect Removal Model... 136

Table 86. Rico's Defect Removal Model... 136

Table 87. Basic Quality-Based Return-on-Investment (ROI) Model 138

Table 88. Six Software Cost Models for Two Strategies .. 140

Table 89. Five Software Cost Models for Estimating Software Development Effort 145

Table 90. Graphical Break Even Point Analysis with Software Life Cycle Cost Models 149

Table 91. Costs and Benefits of Eight SPI Strategies .. 154

Table 92. Costs and Benefits of Personal Software Process (PSP) 154

Table 93. Costs and Benefits of Clean Room Methodology ... 155

Table 94. Costs and Benefits of Software Reuse Process ... 156

Table 95. Costs and Benefits of Defect Prevention Process .. 157

Table 96. Costs and Benefits of Software Inspection Process ... 158

Table 97. Costs and Benefits of Software Test Process ... 159

Table 98. Costs and Benefits of Capability Maturity Model (CMM) 159

Table 99. Costs and Benefits of ISO 9000 ... 160

Table 100. Normalized Costs and Benefits of Eight Strategies .. 161

Table 101. Normalized Benefits of Eight Strategies ... 168

Table 102. Normalized Benefits of Worst Strategies .. 170

Table 103. Normalized Benefits of Poorest Strategies ... 172

Table 104. Costs and Benefits of Categories ... 174

Table 105. Normalized Costs and Benefits of Categories .. 174

Table 106. Normalized Benefits of Categories ... 177

Table 107. Normalized Benefits of Worst Categories (Part I) ... 178

Table 108. Normalized Benefits of Worst Categories (Part II) .. 180

Table 109. Comparative Summary of Eight Strategies .. 183

Table 110. Comparative Summary of Strategies (Part I) .. 183

Table 111. Comparative Summary of Strategies (Part II) ... 184

Table 112. Comparative Summary of Categories .. 184

Introduction

The purpose of this report is to organize the costs and benefits of Software Process Improvement (SPI)

strategies, methods, approaches, and alternatives into a form and methodology that enables software

managers to identify and select the SPI strategies that are most closely aligned with their business,

organizational, and technical goals and objectives. This report will examine a cross section of popular SPI

methods and approaches, prioritize them by their costs and benefits, classify and group them according to

their characteristics, and guide software managers and developers toward a small collection of highly

effective SPI strategies.

This report will classify SPI methods and approaches into two broad classes, descriptive and prescriptive

SPI strategies, or to be referred to as indefinite and vertical SPI strategies throughout this study,

respectively. Indefinite SPI strategies are broadly generalized guidelines that attempt to help software

managers and developers successfully produce software based products and services, but are so non-

specific that they are difficult if not impossible to successfully use without rare expertise. Vertical SPI

strategies are very specific approaches to software management and development, leaving nothing to the

imagination, which when properly used, help managers and developers successfully produce software

based products and services, requiring much less expertise than indefinite SPI strategies.

The costs and benefits of the various SPI strategies examined in this study will be clearly explained and

organized in such a way that software managers and developers will be enabled to evaluate and select

from multiple vertical SPI strategies with known, repeatable, and measurable properties that are proven to

help them best meet their needs. Hence, this study will achieve these objectives by "Using Cost Benefit

Analyses to Develop a Pluralistic Methodology for Selecting from Multiple Prescriptive Software Process

Improvement (SPI) Strategies."

General Background

This study examines a few extremely impressive examples of successful Software Process Improvement

(SPI). SPI is a highly controversial, and much disputed field.

SPI is the discipline of characterizing, defining, measuring, and improving software management and

development processes, leading to software business success, and successful software development

management. Success is defined in terms of greater design innovation, faster cycle times, lower

development costs, and higher product quality, simultaneously.

The case studies, examples, information, and data examined in this study were the result of a notion called

using powerful vertical strategies. Powerful vertical SPI strategies are examined in order to lead the way

and encourage others, that have not been successful with SPI, or have yet to try SPI, to use high leverage

SPI strategies as methods of making quantum leaps forward in bottom line business, organizational, and

technical performance.

This study represents a significant departure from traditional indefinite SPI methods, in that it simply

advises organizations to use powerful vertical and universal, or multiculturally transcendent, SPI solutions

that are guaranteed to work. Traditional SPI methods direct unskilled and inexperienced individuals to

embark on long and indefinite journeys to invent homegrown and highly individualized solutions, having

little chance of succeeding.

A DACS State-Of-The-Art Report 9

Using Cost Benefit Analysis to Develop SPI Strategies10

SPI is a highly controversial field because the technology called "software," our mathematical,

engineering, and scientific understanding of it, our ability to manage its development successfully, and the

state-of-the-practice are yet in their early infancy. It is software’s infancy that results in the exact opposite

business, organizational and technical outcome of which is desired:

1. Frequent software project failures

2. High software development costs

3. Unpredictable and uncontrollable software management and development

4. Low software quality

5. Lack of design innovation

Unfortunately, the overwhelming majority of software development practitioners believe that software

development will always be a craft industry, a product of highly skilled and highly individualized artists

and artistry. In addition, the majority also believe that software management and development are

unmeasurable, and thus uncontrollable.

This study illuminates, introduces, and examines a systematic series of examples, case studies, and

evidence that software management and development are indeed measurable, and thus extremely

controllable. This study represents strong evidence that an extremely sound, stable, and scientific

understanding of software technology, management, and development, indeed does exist, and has existed

for some time, nearly three decades.

This study will also assert the notion that software is nearing classification as a classical engineering

discipline, though still practiced and taught as a craft. Engineering is defined as the practical application

of science and mathematics. Identifying SPI strategies that exhibit known, repeatable, predictable, and

measurable characteristics challenges software’s craft status.

While this paper is largely devoted to a quantitative examination of history, that is the past, it will offer a

highly unique, tantalizing, and prophetic glimpse into the future of software technology that few have

seen. For it is only by examining history that the future can be clearly seen. Ironically, it is often said that

the past must be forgotten, in order to create new and innovative computer programs. Maybe that’s why

software technology is still in its infancy, because we refuse to learn from the past, in fact we forbid it.

Statement of the Problem

This study proposes to identify, evaluate, classify, and prioritize Software Process Improvement (SPI)

strategies into a decision analysis model in order to help software managers and developers choose the

SPI strategies aligned with multiple simultaneous categories of business, organizational, and technical

goals and objectives.

The first subproblem. The first subproblem is to determine if there is an authoritative definition of SPI,

which can serve as a basis to form a common understanding and cultural link with the reader, in order to

facilitate the comprehension of the concepts presented by this study.

The second subproblem. The second subproblem is to determine if there is an authoritative or identifiable

body of SPI strategies recognized by the software management and development community that will aid

the acceptance of the principles advocated by this study.

The third subproblem. The third problem is to survey and evaluate the costs and benefits of various SPI

strategies in order to determine if SPI is a worthwhile endeavor, and to identify a pattern of common costs

and benefits from which to form a framework for comparison.

11A DACS State-Of-The-Art Report

The fourth subproblem. The fourth subproblem is to determine if there is a method of differentiating and

discriminating between SPI strategies in order to serve as a basis for aligning various SPI strategies into

common classes, and eventually compare the classes.

The fifth subproblem. The fifth subproblem is to evaluate and prioritize the SPI classes in order to sharply

differentiate and discriminate the costs and benefits of the SPI classes, serving as a basis for grouping

multiple similar SPI strategies along with their costs and benefits.

The sixth subproblem. The sixth subproblem is to identify the unique goals and objectives of each SPI

strategy, independent of effectiveness, so that software managers may be informed of the costs and

benefits of the specific goals and objectives they wish to achieve.

Hypotheses

The first hypothesis. The first hypothesis is that there is an emerging definition of what Software Process

Improvement (SPI) means, based on both de facto and international industry standards (though it may

need to be enhanced for use in this study). It is further hypothesized that abundant literature exists with

authoritative surveys of SPI.

The second hypothesis. The second hypothesis is there is a growing awareness that multiple SPI strategies

exist with varying degrees of effectiveness (though many cling to a small number of ineffective SPI

strategies).

The third hypothesis. The third hypothesis, still questioned by SPI professionals themselves, is that there

are SPI strategies that actually exhibit low costs and favorable benefits, several that consistently exhibit

even lower costs and higher benefits, and that a standard method of classifying costs and benefits is

emerging.

The fourth hypothesis. The fourth hypothesis is that multiple distinctive classes of SPI methods exist and

that the costs and benefits are consistent within classes, and are starkly different across classes.

The fifth hypothesis. The fifth hypothesis is that, not only do multiple SPI classes exist with sharply different

costs and benefits, but that the SPI classes can be clearly identified, labeled, described, and prioritized.

The sixth hypothesis. The sixth hypothesis is that business, organizational, and technical goals and

objectives can be identified and associated with multiple SPI classes along with their costs and benefits. It

is further hypothesized that this will enable the formation of a framework from which to select specific

goals and objectives, the associated SPI classes and strategies, and quantify the costs and benefits of those

decisions and opted SPI strategies.

Delimitations

The first delimitation. The first delimitation is that this study will not invent a new definition of SPI,

leading the reader to believe that this paper is using non-authoritative concepts, views, and ideas.

The second delimitation. The second delimitation is that this study will invent no new SPI strategies that

have yet to be scientifically proven but will draw upon costs and benefits of existing authoritative

quantitative results.

The third delimitation. The third delimitation is that this study will not evaluate emerging software

product technologies, such as the Internet, World Wide Web, Java, HTML, object-relational databases,

and other high leverage product strategies. Instead this study will examine process or management

approaches, techniques, and methods.

Using Cost Benefit Analysis to Develop SPI Strategies12

The fourth delimitation. The fourth delimitation is that this study will not examine emerging software

design management methodologies, such as product line management, compositional software

components, and reusable frameworks (such as PeopleSoft, SAP/R3, and the San Francisco Project).

These technologies may be more effective than the SPI strategies examined in this study, but their costs

and benefits have yet to be quantified.

The fifth delimitation. The fifth delimitation is that this study will not examine the costs and benefits of

using highly qualified software managers and developers. That is, those having graduated from top tier

schools such as Harvard, Massachusetts Institute of Technology (MIT), and Stanford, a popular topic of

contemporary research.

The sixth delimitation. The sixth delimitation is that this study will not examine systems dynamics theory

which hypothesizes that a stable work environment is the most important factor in determining software

management and development success.

Definitions of Terms

Decision Analysis. Schuyler (1996) defines decision analysis as the discipline that helps decision makers

choose wisely under uncertainty, involving concepts borrowed from probability theory, statistics,

psychology, finance, and operations research. Decision analysis involves the use of structured tools and

techniques for organizing unstructured problems in order to make sound, profitable, and certain decisions

in the face of seeming uncertainty.

Descriptive. McKechnie (1983) defines descriptive as an informal outline, explanation, or figurative

portrayal lacking formal detail, elaboration, and precision. Descriptive SPI strategies may indicate which

processes are important, and even indicate important characteristics of key software management

development processes, yet without giving sufficient guidance to novices, describing only the essence or a

small portion of the total strategy that’s difficult to understand without deep personal experience.

Indefinite. Braham (1996) defines indefinite as having no fixed limit, not clearly defined or determined, or

being uncertain and vague. Indefinite SPI strategies provide no criteria for determining when process

improvement has been achieved, and tend to emphasize placing too much emphasis on low leverage or

low return-on-investment processes and activities.

Methodology. Braham (1996) defines methodology as a set or system of methods, principles, and rules, as

in the sciences. A SPI methodology is a comprehensive set of step-by-step instructions for achieving a

specific goal or objective.

Model. Turban and Meridith (1994) and Schuyler (1996) define models as abstract representations of

reality and simplified representations that consist of variables and mathematical formulas (e.g., a

mathematical equation of a line that has been correlated to profit, loss, performance, or other

phenomenon).

Multiculturally transcendent. Braham (1996) defines multicultural as the existence or presence of multiple

unique cultural identities, each with their own values, beliefs, and norms, and transcendent as going

beyond, surpassing, or exceeding the limits. Therefore, multiculturally transcendent means crossing

multiple cultures simultaneously, or having a common or overlapping set of values, beliefs, and norms

(e.g., universal applicability to a wide variety of nations, industries, and organizations).

Pluralistic. Braham (1996) defines pluralistic as a condition in which multiple minority groups participate

fully in a dominant society. In the context of this study, it will mean that there will be multiple minor and

13A DACS State-Of-The-Art Report

dominant approaches or choices, each with their own merits, from which to choose, depending on context

specific goals and objectives.

Prescriptive. McKechnie (1983) defines prescriptive as a formal, strictly defined, accurately stated, and

minutely exact set of rules, orders, steps, or procedures that must be followed without variation. In the

context of this study, it will mean that prescriptive SPI strategies contain the entire description of the

approach to be used and detailed guidance for novices and non-experts, unlike indefinite or descriptive

SPI strategies.

Software Development. The IEEE Standard Glossary (1990) defines software development as the

transformation of user needs into a software product, involving requirements analysis, software design,

computer programming, and testing (e.g., the combination of multiple computer programming language

statements into a product that performs a useful function).

Software Management. The IEEE Standard Glossary (1990) defines software management as the process

of planning, estimating resources, scheduling, conducting, coordinating, and controlling software

development.

Software Process Improvement (SPI). Harrington (1991) defines process improvement as a systematic

methodology that significantly helps businesses simplify and streamline operational processes. Harrington

states that the objective of process improvement is to ensure that business processes eliminate errors,

minimize delays, promote understanding, are easy to use, are customer friendly, are adaptable, enhance

competitiveness, and reduce excess capacity.

Software Process Improvement (SPI) strategy. Combining Harrington’s (1991) and McKechnie’s (1983)

definitions of process improvement and strategy, a SPI strategy is one of many optional methodologies,

plans, and tactical maneuvers that will increase the likelihood of successfully achieving one or more

business objectives. That is, a SPI strategy is prefabricated management or technical approach that will

likely result in successful software development.

Software. The IEEE Standard Glossary defines software as computer programming language instructions,

data, information, and documentation that comprise or constitute a software product (e.g., shrink wrapped

word processor with disks, programs, and user guides).

Strategy. McKechnie (1983) defines strategy as the science of planning and directing large scale

operations, specifically by maneuvering resources into the most advantageous position prior to actual

deployment, implementation, and engagement in order to ensure that goals and objectives have a high

probability of being successfully achieved.

Vertical. In the context of this study, vertical will be defined as specific, non-ambiguous, prescriptive SPI

strategy and tactical approach with known, predictable outcomes for achieving business goals and

objectives and successfully producing software products and services. Vertical also means SPI strategies

that are prefabricated, portable, and self-contained, which can be deployed and withdrawn from

organizational use without having to integrate them into the total horizontal set of organizational

processes, procedures, and operations.

Significance

The significance of this study is in several areas, objectively analyzing the results, or costs and benefits, of

Software Process Improvement (SPI) strategies and phenomenon. This study will not invent any new SPI

strategies or analyze exotic and highly unconventional SPI strategies, but objectively analyze SPI

strategies that have roots in the last three decades.

Using Cost Benefit Analysis to Develop SPI Strategies14

This study will analyze common criteria for evaluating and comparing SPI strategies and help solidify and

promote a standard way of measuring and evaluating costs and benefits quantitatively. This will orient the

reader toward the existence of tangible evidence for classifying SPI strategies and forming important

cultural images of SPI and SPI strategies.

This study will provide a broader, though not unconventional, definition of SPI, SPI strategies and tactics,

and present the reader with a wider array of choices in choosing SPI strategies. This study will objectively

analyze the effectiveness of both mainstream and unknown SPI strategies, and begin to alert the reader to

the existence of a wider array of choices when selecting SPI strategies.

This study is targeted at technical experts, practitioners, newcomers, and passers-by to the field of

software management, development, and SPI. This study will exhibit an objective analytical framework to

technical experts to begin viewing software management and development as a quantitative and scientific

discipline. And, this study will rapidly orient practitioners and newcomers toward the issues involved in

choosing SPI strategies, building and delivering software products and services, and guide them away

from ineffective SPI strategies and toward effective SPI strategies.

Finally, if this analysis reveals no discriminating criteria for selecting SPI strategies, that will be important

to technical experts, practitioners, and newcomers; this will be also significant.

Organization

This study is organized into five integrated chapters or sections, which introduce the context and scope of

the study which is to analyze and organize Software Process Improvement (SPI) strategies and their

associated information:

Introduction. This chapter introduces the purpose of this study, which is to objectively analyze SPI

strategies by using their costs and benefits, determining whether groundwork may be laid for constructing

a logical and analytical framework as a tool from which software managers and engineers may choose

optimal software product development strategies.

Literature Review. This chapter surveys reported SPI strategies and their associated costs and benefits in

order to determine whether a pattern of SPI approaches, common criteria for measurement, and

quantitative costs and benefits begin emerging for objective identification, analysis, and organization.

Methodology. This chapter begins to design and construct an analytical framework from lower level

building blocks into an integrated and organized structure in which to populate with SPI strategies and

cost and benefit information, along with other important software management and development criteria

which may aid in analysis and selection.

Cost-Benefit Analyses. This chapter will exercise and execute the analytical framework of SPI strategies,

cost and benefit information, and other critical criteria, in order to determine if viable discriminating and

differentiating factors indeed do exist, from which to provide software managers and developers with

critical business decision making data.

Conclusion. This chapter will report the overall conclusions of this study, its analysis, whether it achieved

its goals and objectives, whether any useful management decision making data emerged, and if so, what

those critical data are.

15A DACS State-Of-The-Art Report

Literature Review

The chapter will survey reported results from organizations that have invested heavily in Software Process

Improvement (SPI), identify the strategies they’ve employed, and report the costs and benefits of their

efforts whenever possible. Much of the literature is from advanced and very mature organizations that are

largely devoid of the fundamentals of introductory SPI principles.

Selecting literature from mature organizations is part of the strategy of this study, deliberately chosen to

help beginning organizations catch up with those that are far ahead of them. This chapter and this study

will attempt to close the gap between introducing basic SPI principles and their practical application in an

advanced way without serving primarily as an introductory tutorial on SPI, but a stepping stone into

mature principles for novices and beginners, thus an intermediate guide.

This chapter will intentionally avoid qualitative, introductory, philosophical, and elementary SPI

literature, and will focus on high leverage quantitative studies and the quantum performance impacts of

employing those SPI strategies. It is unfortunate that a larger body of antithetical literature doesn’t exist

for comparative analysis. It can be supposed that the small percentage of software producing

organizations that actually employ SPI, is the antithetical evidence in of itself. However, making that

determination is for another study, not this one.

This chapter attempts to conduct and provide a rapid, yet authoritative, survey of the field of mature SPI

strategies. Broad structural issues and topics will be addressed such as:

(a) a common definition and understanding of what SPI is,

(b) common strategies for achieving or not achieving SPI,

(c) strategies for SPI measurement,

(d) common costs and benefits of SPI, and

(e) the prioritization of SPI strategies.

Definitions

Organizing the literature defines SPI as a management science discipline (Rico, 1998) that includes

procedures, tools, and training for SPI (Austin & Paulish, 1993), process assessment and evaluation

(Szymanski and Neff, 1996), and process perfection (Braham, 1996). SPI also includes having a value-

added focus (Szymanski and Neff, 1996), minimizing and eliminating the resources associated with all

processes, value-added and non-value added (Garrison and Noreen, 1997a), and increasing customer

satisfaction (Harrington, 1991). SPI is popularly known as changing processes very slowly and

deliberately over a long period of time (Davenport, 1993). As shown in Table 1, SPI definitions vary

widely and are not standardized.

Braham (1996) defines improvement as bringing something into a more desirable or excellent condition,

making something better, or increasing something in quality or value. Braham’s definition of

improvement implies that something is made better than it currently is. Braham makes no judgement as to

the current state or quality of what is being perfected, but that improvement means making the current

state or quality even better than it currently is.

Using Cost Benefit Analysis to Develop SPI Strategies16

Harrington (1991) defines process improvement as a systematic methodology that significantly helps

businesses simplify and streamline operational processes. Harrington goes on to state that the objective of

process improvement is to ensure that business processes eliminate errors, minimize delays, promote

understanding, are easy to use, are customer friendly, are adaptable, enhance competitiveness, and reduce

excess capacity. So, Harrington is saying that process improvement is the act of eliminating defects,

speeding productivity and delivery, enhancing product desirability, satisfying customers, and minimizing

the use of organizational resources.

Rico (1998) defines SPI as a discipline of defining, measuring, and changing software management and

development processes and operations for the better. Rico defines SPI as a science involving three distinct

elements. The first element is capturing, modeling, and characterizing key software management and

development processes in a tangible form such as graphical diagrams, step-by-step procedures, or formal

notations, languages, and grammars. The second element is measuring the cost, efficiency, and

effectiveness of those defined processes and comparing them against business, organizational, and

technical goals. And, the third is modifying, changing, simplifying, and streamlining the process until it is

reduced to its essential elements, non-essential elements have been removed, and is congruent with goals

and objectives.

Table 1: Survey of Software Process Improvement (SPI) Definitions in Literature

Source of Definition

Definition Braham Harrington Rico Szymanski Austin Garrison Davenport

Perfect � �

Add Value � � � �

Add Quality � � � �

Productivity � � �

Speed � � �

Efficiency � � � �

Reduce Cost � � �

Advantage � �

Profit � �

Flexible �

Downsize �

Substitute �

Method � � �

Define � � �

Measure � � �

Simplify � � �

Add � �

Incremental �

17A DACS State-Of-The-Art Report

Szymanski and Neff (1996) define SPI as “a deliberate, planned methodology following standardized

documentation practices to capture on paper (and in practice) the activities, methods, practices, and

transformations that people use to develop and maintain software and the associated products.”

Szymanski and Neff go on to explain SPI as a process of defining organizational processes, assessing and

evaluating them, eliminating inessential steps, and augmenting organizational processes with value-

adding steps. Szymanski and Neff place extra emphasis on modeling all processes in a highly structured

and uniform way and examining whether current processes add-value or whether value-added processes

need to be introduced.

Austin and Paulish (1993) define SPI as integrated procedures, tools, and training in order to increase

product quality, increase development team productivity, reduce development time, and increase business

competitiveness and profitability. Austin and Paulish define SPI as a process with its own procedures,

tools, and training, while the previous authors merely advocate the definition and modeling of

organizational processes without saying how. In addition, Austin and Paulish focus SPI on increasing

product quality, productivity, and profitability.

Garrison and Noreen (1997a) define Process Value Analysis (PVA), which is similar to SPI, as

systematically analyzing the activities required to make products or perform services, identifying all

resource consuming activities as value-added or non-value added, and then minimizing or eliminating the

resource consumption of all activities. Garrison and Noreen make no mention of macro level PVA, that is,

treating an entire enterprise as a process that is a candidate for elimination (more popularly known as

value chain analysis). Figure 1 most appropriately represents PVA from Garrison’s and Noreen’s

viewpoint.

Figure 1. Process Value Analysis (PVA)
A net process improvement of 37% has been effected by elimination of process 2 and streamlining of processes 3, 4, and 5.

Process 1 Process 2 Process 3 Process 4 Process 5

(4 Hours) (6 Hours) (5 Hours) (7 Hours) (5 Hours)

Value Added No Value Added Value Added No Value Added Value Added

No Change Eliminate Streamline Streamline Streamline

Process 1 Process 3 Process 4 Process 5

(4 Hours) (4 Hours) (5 Hours) (4 Hours)

Value Added Value Added No Value Added Value Added

Process

Improvement

(37%)

Old Cycle Time (27Hours)

New Cycle Time (17Hours)

Using Cost Benefit Analysis to Develop SPI Strategies18

Davenport (1993) defines process improvement as involving a low level of change, focusing on minutely

incremental change, primarily targeted at polishing existing processes, and overall involving a long term

progression of change, more akin to placing a Band-Aid on a severed limb.

Davidson (1993) defines re-engineering, which is similar to SPI, as a method for identifying and

achieving radical business performance improvements in productivity, velocity, quality, business

precision, and customer service increases of ten or even a hundred fold or more. Davidson defines micro

or small-scale process improvement in terms of optimization, short timeframes, local leadership, diverse

infrastructure, financial performance focus, single process focus, and multiple projects. Davidson defines

macro or large-scale process improvement in terms of transformation, long timeframes, senior leadership,

integrated infrastructure, multiple benefit paths, enterprise focus, and massive scale. Davenport (1993)

and Davidson by far give the most formal definitions of both process improvement and its close cousin,

re-engineering.

Strategies and Alternatives

Table 1 demonstrates that neither a standard definition of Software Process Improvement (SPI) exists, nor

a standard set of SPI metrics to measure the costs and benefits of SPI and the various SPI strategies. This

section surveys and identifies SPI techniques, methods, methodologies, strategies, and approaches from

approximately 72 scholarly studies. The 72 studies range from the Massachusetts Institute of

Technology’s (MIT) two decade long study of SPI methods from the largest Japanese corporations,

Microsoft, and Netscape, the seminal laboratories of IBM, the Software Engineering Institute (SEI), and

straight from reports of recent SEI CMM Level 5 organizations.

This section’s survey and analysis, like the previous one, revealed a non-standard plethora of SPI

strategies consisting of over 451 individual SPI techniques. Eventually, it is the intention of this overall

study to identify the relevant SPI strategies, not by qualitative judgement such as keyword analysis or

popular survey, but by directly attaching the cost and benefits of the individual SPI techniques to the SPI

techniques themselves. This study will attempt to let the data speak for itself and keep qualitative

interpretation to a minimum. Thus, it is the intention of this study to be “quantitative” in nature, not

qualitative. But, that’s a topic for the next three sections and the next two chapters.

Figure 2. Software Process Improvement (SPI) Strategies from Survey of 72 Case Studies

19A DACS State-Of-The-Art Report

As shown in Figure 2, 35 categories of SPI techniques were identified by this section’s survey of 72

representative studies consisting of 451 individual SPI techniques. The first 17 SPI categories included,

Process, Metrics, Design, Management, Quality, Inspection Process, Total Quality Management, Tools,

Defect Density, Test, Configuration Management, SEI CMM, Reuse, Prevention, Customer Satisfaction,

Requirements, and Personal Software Process. The last 18 SPI categories included, Teams, Training,

Clean Room, Orthogonal Defect Classification, ISO 9000, Baldrige, Formal Methods, People, Quality

Function Deployment, Risk, Business Transformation, Digital Strategy, Process Innovation, Profit,

Reengineering, Resistance Embracement, Statistical Process Control, and World Wide Web.

As shown in Figure 2, Process as a SPI strategy was cited the most often, 64 out of 451 times, or

approximately 14% of the time. The World Wide Web, on the other hand, was cited the least often, 1 out

of 451 times, or 0.22% of the time. As stressed earlier, this analysis does not imply that Process as a SPI

strategy is superior to the World Wide Web, but merely that Process was used 64 times more often than

the World Wide Web as reported by the 72 case studies surveyed in this section. The next chapter will

attach the costs and benefits of using Process versus other key SPI strategies, in order to help determine

which methods are superior, and are thus recommended by this study.

Figure 3 groups the previously identified 35

SPI categories into nine major classes for

further analysis. Baldrige, Inspection Process,

ISO 9000, Orthogonal Defect Classification,

Prevention, Personal Software Process,

Quality, Test, and Total Quality Management

were all grouped together to form the Quality

SPI class, accounting for 28% of the

individual SPI techniques. Configuration

Management, Process, Profit, Reengineering,

and SEI CMM were all grouped together to

form the Process SPI class, accounting for

19% of the individual SPI techniques.

Customer Satisfaction, Defect Density,

Metrics, and Statistical Process Control were

all grouped together to form the Metrics SPI

class, accounting for 18% of the individual

SPI techniques. Clean Room, Design, Formal

Methods, Quality Function Deployment, and

Reuse were all grouped together to form the

Design SPI class, accounting for 14% of the individual SPI techniques. Management, People, Resistance

Embracement, and Risk were all grouped together to form the Management SPI class, accounting for 9%

of the individual SPI techniques. Business Transformation, Digital Strategy, Process Innovation, Tools,

and World Wide Web were all grouped together to form the Automation SPI class, accounting for 6% of

the individual SPI techniques. The Requirements, Teams, and Training SPI classes, respectively, account

for 2% of the individual SPI techniques.

Figure 3. Software Process Improvement (SPI)

Strategies Classification

Using Cost Benefit Analysis to Develop SPI Strategies20

Again, this doesn’t necessarily mean that Quality-oriented SPI strategies are superior to all others, and

that SPI approaches like Automation are inferior to all others. In fact, Davenport (1993), Davidson (1993),

Reid (1997), and more recently Downes and Mui (1998) have been reporting that Automation as a process

improvement strategy is quantitatively and economically superior to all of the others. But, once again, the

final determination is for the next two chapters of this study. What this analysis does indicate is that

Quality-oriented SPI strategies are a conservative favorite among organizations engaging in SPI, while

Automation is emerging and not yet fully embraced. But, this study will examine these issues in further

detail in the analysis and conclusions.

Garrison and Noreen (1997b) report that there are two approaches to improving profitability: (a)

increasing volume and total revenue while maintaining relative variable and fixed costs and (b) reducing

variable and fixed costs while maintaining current volume. Garrison and Noreen go on to report that the

most common and historically preferable approach to improving profits is to increase volume and thus

total revenue while maintaining relative variable and fixed costs, especially for cost intensive products

and services. Garrison and Noreen (1997a) report that two common methods of reducing costs are to: (a)

decrease the cost of value adding and non-value adding activities through Process Value Analysis (PVA)

and (b) improve quality by reducing the number OF defects through defect prevention and appraisal

activities (see Table 2). Garrison and Noreen (1997a) report that cost reducing approaches, such as

Process Value Analysis (PVA), Aactivity-Based Costing (ABC), and quality management lead to

increased cost control and management and are directly controllable, though cumbersome, and have

break-even points of their own that need to be monitored carefully.

Table 2: Defect Prevention and Appraisal Process

Process Activity

Prevention System Development

Quality Engineering

Quality Training

Quality Circles

Statistical Process Control Activities

Supervision of Prevention Activities

Quality Data Gathering, Analysis, and Reporting

Quality Improvement Projects

Technical Support Provided to Suppliers

Audits of the Effectiveness of the Quality System

Appraisal Test and Inspection of Incoming Materials

Test and Inspection of In-Process Goods

Final Product Testing and Inspection

Supplies Used in Testing and Inspection

Supervision of Testing and Inspection Activities

Depreciation of Testing Equipment

Maintenance of Testing Equipment

Plant Utilities in the Inspection Area

Field Testing and Appraisal at Customer Site

21A DACS State-Of-The-Art Report

Garrison and Noreen (1997a and 1997b) set the context for the rest of this section and the remainder of

this study. Garrison and Noreen (1997b) report that the most common historical method of increasing

profitability has been to increase volume through fixed cost-based advertising. Garrison and Noreen

(1997a) report that the more cumbersome and less used approach is to reduce variable and fixed costs by

process and quality improvement. This study focuses on the definitions, costs, and benefits associated

with process and quality improvement. The remainder of Chapter 2 and the rest of this study focus on the

costs and benefits of process and quality improvement methods and approaches, the road less traveled,

thus establishing the context for Chapter 3, the methodology.

Arthur (1997) enumerated five techniques that enabled U.S. West to achieve what he called “quantum” or

major improvements in software management and development performance, such as 50% improvements

in quality, cost, and cycle times (see Table 3). The first technique Arthur reports is to focus directly on the

performance results that need to be achieved, such as reducing defects, cycle time, and rework costs, not

company-wide training in total quality management (TQM) theory. The second technique Arthur reports

is to focus SPI efforts directly on the source of the areas needing improvement, utilizing those directly

involved, not company-wide quality circles solving broad-ranging company-wide problems of processes

that aren’t within the purview of the improvement teams. The third technique Arthur reports is to focus

SPI efforts on improving the customer’s perception of the product or service, such as low quality, high

cost, long delivery times, and poor service, not on solving internal sociological problems that will never

impact the customer. The fourth technique Arthur reports is to focus the SPI resources on only the people

directly involved in the areas needing improvement, such as those that have a hands-on association to the

problem areas, not involving those that don’t directly contribute to the problems being solved. The fifth

technique Arthur reports is to focus SPI resources on teaching the concise techniques necessary to solve

specific problems, not teach theory such as TQM or software process improvement philosophy. Arthur

summarizes by stating that organizations should focus improvement efforts, focus on immediate results,

use accelerated methods, and define consistent processes using flowcharts, measuring defects, time, and

cost.

Table 3: U.S. West’s Software Process Improvement (SPI) Principles

Strategy Technique

Mistakes Focus on Learning Instead of Results

Lack of Focus

Lack of Sponsorship

Trying to Involve Everyone, Not Just the People Focused on Key Results

Teaching Theory Instead of Developing Real World Experience

Solutions Focus Directly on the Performance Results That Need to be Achieved

Focus Efforts Directly on the Source of Areas Needing Improvement

Focus Efforts on Improving the Perception of Products or Services

Focus Resources on those Directly Involved in the Improvement Area

Focus Resources on the Techniques Necessary to Solve Specific Problems

Using Cost Benefit Analysis to Develop SPI Strategies22

Humphrey (1989) created a five-stage SPI method known as the Software Engineering Institute’s (SEI’s)

Capability Maturity Model for Software (CMM) beginning in 1987 (see Table 4). The SEI’s CMM dates

back to an early 1960s era IBM manufacturing process improvement concept and technical report entitled,

“Process Qualification—Manufacturing’s Insurance Policy” as reported by Harrington (1991). IBM’s

manufacturing process qualification technique was translated several times over the last three decades into

Crosby’s (1979) “Maturity Grid,” IBM’s (Radice, Harding, Munnis, and Phillips, 1985) “Process Grid,”

Humphrey’s (1987) “Process Maturity Grid,” and then into Paulk’s, Weber’s, Curtis’, and Chrissis’ (1995)

“Capability Maturity Model for Software (CMM).” The SEI’s CMM is a staged model consisting of five

groups or Levels of purportedly important software management processes called Key Process Areas

(KPAs). The five CMM Levels are Initial, Repeatable, Defined, Managed, and Optimizing (Humphrey

1989). There are no KPAs for the Initial Level signifying an undefined, immature, or worst state of

software management capability (Humphrey, 1989). The KPAs for the Repeatable Level are Requirements

Management, Software Project Planning, Software Project Tracking and Oversight, Software Subcontract

Management, Software Quality and Software Configuration Management, signifying a defined and

repeatable software project-level management capability (Humphrey, 1989). The KPAs for the Defined

Level are Organization Process Focus, Organization Process Definition, Training Program, Integrated

Software Management, Software Product Engineering, Intergroup Coordination, and Peer Reviews,

signifying a defined and repeatable organizational-wide software management process (Humphrey, 1989).

The KPAs for the Managed Level are Quantitative Process Management and Software Quality

Management, signifying a defined and repeatable organization-wide software measurement and statistical

analysis process (Humphrey, 1989). The KPAs for the Optimizing Level are Process Change

Management, Technology Change Management, and Defect Prevention, signifying a defined and

Table 4: SEI Capability Maturity Model for Software (CMM)

Level Key Process Areas (KPA) Additional Explanation

Optimizing Process Change Management Software Process Improvement (SPI)

Technology Change Management Information Technology Insertion

Defect Prevention (self explanation)

Managed Software Quality Management Use of Software Quality Metrics

Quantitative Process Management Use of Statistical Management Methods

Defined Peer Reviews Software Inspection Process

Intergroup Coordination Multi-Program/Project Communications

Software Product Engineering Software Design, Development and Test

Integrated Software Management Multi-Program/Project Management

Training Program Software Engineering Process Training

Organizational Process Definition Multi-Program/Project Process Standards

Organizational Process Focus Multi-Program/Project Process Definition

Repeatable Software Configuration Management (self explanation)

Software Quality Assurance Process and Product Auditing

Software Subcontract Management (self explanation)

Software Project Tracking and Oversight Structured Project Management Methods

Software Project Planning Written Software Project Plans

Requirements Management Software Requirements Engineering

Initial None None

23A DACS State-Of-The-Art Report

repeatable software process improvement process (Humphrey, 1989). In summary, the SEI’s CMM is a

five stage process of defining software project management processes, defining organizational wide

software management processes, defining organizational wide measurement and statistical analysis

processes, and then defining organizational wide software process improvement processes. The SEI

(1999) reports that 80% of the software organizations worldwide are at SEI CMM Levels 1 and 2, and

therefore have no organizational-wide processes for software management, measurement and statistical

analysis, and software process improvement.

Cosgriff (1999a and 1999b), Oldham et al. (1999), and Craig (1999) report that Hill AFB used the SEI’s

CMM as their primary SPI method, achieving CMM Level 5 in 1998 (see Figure 4). Cosgriff (1999a)

cites the use of SEI CMM-Based Assessments for Internal Process Improvement (CBA-IPIs) and

Software Capability Evaluations (SCEs) by Hill AFB. However, Oldham et al. (1999) mentions the use of

defect density metrics, the Software Inspection Process, and cycle time metrics as key components of Hill

AFB’s SPI efforts. Craig reports that focusing on the SEI CMM’s Software Quality Assurance (SQA) Key

Process Area (KPA) is a critical element of Hill AFB’s CMM Level 5 organization. Cosgriff (1997b)

reports on twelve elements of Hill AFB’s SPI efforts, management sponsorship, project planning,

operational definitions, software quality assurance, software configuration management, product lines,

intergroup coordination, measurement, quantitative process management, software quality management,

process change management, and technology change management, mirroring the SEI CMM’s KPAs

Figure 4. Ogden Air Logistics Center Software Process Improvement (SPI) Journey

Using Cost Benefit Analysis to Develop SPI Strategies24

Yamamura and Wigle (1997) report that Boeing’s Defense and Space Group also used the SEI’s CMM as

a primary SPI method, achieving CMM Level 5 in 1996. Actually, Yamamura and Wigle report that

Boeing’s 17 year SPI journey started in the early 1980s (see Table 5). Yamamura and Wigle report that

Boeing’s SPI efforts occurred in four main phases, defining process standards, use of the Software

Inspection Process and defect density metrics, use of cycle time reduction and productivity increase

initiatives, and for the last two years, the use of the SEI’s CMM. So, Yamamura and Wigle report that

having defined processes, using inspections and defect density metrics, and having cycle time reduction

and productivity increase initiatives, enabled Boeing to achieve CMM Level 5 after only two years of

using the SEI’s CMM. Wigle and Yamamura (1997) cite two key elements of Boeing’s SPI efforts, charter

a Software Engineering Process Group (SEPG) based on continuous SPI (not conducting assessments)

and staff the SEPG with key hands-on project members (not ivory tower specialists). Wigle and

Yamamura enumerate seven of fourteen SPI techniques, such as obtaining management sponsorship,

establishing realistic goals, overcoming individual resistance, educating everyone in the basics,

overcoming challenges associated with new SPI teams, establishing an SEPG, and capturing as-is

processes first. Wigle’s and Yamamura’s remaining seven SPI techniques include thoroughly documenting

processes, properly interpreting the CMM, defining rapidly deployable processes, formalizing SPI

processes themselves, forming appropriate organizational policies, managing compliance with internal or

external standards, and using emerging technologies such as intranets to deploy processes.

Jones (1996 and 1997a) reports to have measurements, costs, and benefits for SPI involving 7,000

software projects, 600 software development organizations, and six industries. Jones reports that

organizations go through six distinct stages or approaches to SPI. Jones refers to these so-called “six

Table 5: Boeing Defense and Space Software Process Improvement (SPI) Journey

Time frame Strategy Technique

1996 SEI CMM Framework Achieved CMM Level 5

Mid 1990s Quality Teams Deployment Process

Upgraded Software Process Improvement (SPI) Group

Added Software Process Improvement (SPI) Processes

Early 1990s Process Management Focused on Increasing Productivity

Focused on Reducing Cycle Time

Added More Software Metrics and Measurements

Conducted Process Evaluations

Late 1980s Process Management Focused on Reducing Defects

Created Design Review Board

Added More Software Metrics and Measurements

Updated Software Engineering Processes

Introducing a Six-Step Software Engineering Process

Conducted Software Engineering Process Training

Early 1980s Process Definition Created Software Work Product Standards

Created Company Software Engineering Standards

Created Basic Software Metrics and Measurements

Created Software Engineering Process Library

Documented Software Engineering Processes

25A DACS State-Of-The-Art Report

stages of software excellence” as, management technologies, software processes and methodologies, new

tools and approaches, infrastructure and specialization, reusability, and industry leadership (see Table 6).

Jones’ first three of six SPI methods are, management technologies (referring to improvement of software

project planning), software processes and methodologies (referring to improvement of technical activities

such as software requirements analysis and design), and new tools and approaches (referring to the

insertion of new computer technologies). Jones last three of six SPI methods are, infrastructure and

specialization (referring to the formation of functional specialization groups such as software quality

assurance), reuse (referring to reusing software life cycle artifacts and software source code), and industry

leadership (referring to automation of all software life cycle management and development functions).

Diaz and Sligo (1997) report that Motorola’s Government Electronics Division (GED) used the SEI’s

CMM as their primary SPI method for achieving CMM Level 5 as early as 1995 (see Table 7). Diaz and

Sligo report that Motorola developed a “Software Quality Management Manual” that defined software

processes and began widespread use of the Software Inspection Process, helping Motorola to achieve

CMM Level 3 in 1992. Diaz and Sligo report the formation of SPI working groups, creation of software

project metrics tracking tools, the use of quality metrics (most likely defect density metrics), and the

creation of a “Handbook for Quantitative Management of Software Process and Quality,” helping

Motorola to achieve CMM Level 4 in 1994. Diaz and Sligo report the formation of defect prevention

working groups, “defect prevention handbook,” CMM Level 5 metrics tools, and the formation of process

and technology change management handbooks, helping Motorola achieve CMM Level 5 as early as

Table 6: SPR Software Process Improvement (SPI) Model

Time frame Strategy Technique

Zero Assessment Software Process Assessments

Baselines

Benchmarks

One Management Project Planning

Resource Estimation

Project Tracking

Two Process Requirements Management

Joint Application Design (JAD)

Three Tools Computer Aided Software Engineering (CASE)

Client/Server Technologies and Strategies

Four Infrastructure Establish Configuration Management Function

Establish Test and Maintenance Function

Establish Software Quality Assurance Function

Five Reuse Reuse of Software Architecture and Designs

Reuse of Software Life Cycle Artifacts

Reuse of Software Source Code

Six Leadership Project Management Tool Suites/Environment

Software Development Tool Suites/Environment

Software Quality/Test Tool Suites/Environment

Using Cost Benefit Analysis to Develop SPI Strategies26

1995. Diaz and Sligo report nine SPI techniques for achieving and maintaining SEI CMM Level 5. Diaz’

and Sligo’s first four SPI techniques include, focusing on improving new projects, assessing the intent of

CMM KPAs, emphasizing productivity, quality, and cycle time, and getting managers committed to SPI.

Diaz’ and Sligo’s remaining five SPI techniques include, involving only hands-on software managers and

developers in performing SPI, getting managers to believe in SPI benefits, keeping customers informed,

creating organizationally unique process documentation, and overcoming resistance to change.

Haley (1996) reports Raytheon Electronic Systems’ Equipment Division used the SEI’s CMM as their

primary SPI method for achieving CMM Level 3 in 1991 (see Table 8). Haley reports that Raytheon’s SPI

model consisted of two methods, establishing a SPI infrastructure and SPI measurement and analysis.

Haley reports that Raytheon’s SPI infrastructure method consisted of four elements, a policy and

procedures working group to define processes, a training working group to deploy software processes, a

tools and methods working group to identify automated software tools, and a process database working

group to manage software process assets. Haley reports that Raytheon’s SPI measurement method

consisted of two elements, data measurement definitions of key software metrics and data analysis to

illustrate how to interpret and manage the key software metrics and measurements. Additionally, Haley

reports on two key SPI leverage points or techniques used by Raytheon for achieving and maintaining SEI

CMM Level 3, product improvement and process improvement. Haley reports that Raytheon’s product

improvement leverage point consisted of four elements, participation in system definition by software

personnel, requirements definition to identify customer needs, inspections to identify software defects,

and integration and qualification testing to formalize testing. Haley reports that Raytheon’s process

Table 7: Motorola Software Process Improvement (SPI) Strategy

Year Position Target Strategies, Methods, and Techniques

1989 CMM Level 2 CMM Level 3 Organizational Software Engineering Policy

Organizational Software Engineering Procedures

Software Life-Cycle Management Manual

Cross Functional Software Teams

Software Inspection Process

1992 CMM Level 3 CMM Level 4 Senior Practitioner Process Improvement Group

Senior Task Leader Process Improvement Group

Project Effort Metrics Collection Tool

Software Process and Quality Metrics Handbook

1994 CMM Level 4 CMM Level 5 Defect Prevention Working Group

Defect Prevention Handbook

Chief Software Engineer Group Expansion

Project Kickoff (to begin CMM Level 5)

Project Self Assessments

Level 5 Software Metrics Collection Tool

Double Process Improvement Group

Process and Technology Change Handbooks

Weekly CMM Level 5 Improvement Meetings

1995 CMM Level 5 CMM Level 5 Focus on Improving New Projects

Assess Intent of CMM for Each New Project

Emphasize Productivity, Quality, and Cycle Time

Management and Staff Commitment and Belief

27A DACS State-Of-The-Art Report

Table 8: Raytheon Software Process Improvement (SPI) Strategies

Strategy Method Technique

Infrastructure Policy & Procedures Working Group Software Engineering Policy

Software Engineering Practices

Detailed Procedures and Guidelines

Training Working Group Train Everyone

Training During Work Hours

Overview and Detailed Courses

Tools and Methods Working Group Tool Selection and Evaluation

Commercial-Off-The-Shelf (COTS)

Rapid Pathfinding Tool Laboratory

Process Database Working Group Software Engineering Processes

Project and Project Kickoff Data

Software Quality Data

Measurement Data Measurement Definitions Process, Project, and Product Metrics

Data Analysis Earned Value Management

Focus Points Product Improvement System and Requirements Definition

Software Inspection Process

Integration and Qualification Testing

Process Improvement Software Development Planning

Training

Pathfinding

Metrics Focus Product Quality Defect Density Metrics

Cost of Quality Appraisal to Failure Ratios

Predictability and Productivity Cost Performance Indices and Coding

improvement leverage point consisted of three elements, software development planning to formalize

project planning, training to teach software processes, and pathfinding to establish software development

tool sets for software personnel.

McGibbon (1996), Director of the Data and Analysis Center for Software (DACS) at Rome Laboratory in

Rome, New York identified the costs and benefits of using various SPI methods. McGibbon developed a

quantitative analytical model for evaluating, selecting, and using three principal SPI methods (see Table

9). McGibbon did so by conducting a survey and performing quantitative analysis of SPI methods, costs,

and benefits, selecting the most cost-effective and beneficial approaches. McGibbon identified the

Software Inspection Process, Software Reuse, and the Clean Room Methodology as three of the best SPI

methods, developing a SPI cost model to enumerate concise benefits such as development costs, rework

costs, maintenance costs, and development and maintenance savings, for individual users and use.

McGibbon chose these three SPI methods analyticaly and quantitatively because of their cost efficiency,

defect removal efficiency (their ability to identify and remove defects before software product delivery),

and ultimately their ability to result in the production of the highest possible quality products and services

at the lowest possible cost. McGibbon also judged and compared these three methods for their ability to

result in the lowest possible software maintenance costs. McGibbon optimized his SPI model, approach,

and methodology for software quality, in terms of the absence of identifiable defects.

Using Cost Benefit Analysis to Develop SPI Strategies28

Schafer, Prieto-diaz, and Matsumoto (1994), leading Software Reuse and Domain Analysis experts on

three continents, conducted an analysis of eight leading Software Reuse and Domain Analysis

methodologies (see Table 10). Schafer, Prieto-diaz, and Matsumoto determined that the eight Software

Reuse and Domain Analysis methodologies were composed of five common phases, stages, or processes.

Schafer, Prieto-diaz, and Matsumoto identified the five common Software Reuse and Domain Analysis

phases to be domain characterization, data collection, data analysis, taxonomic classification, and

evaluation. Schafer, Prieto-diaz, and Matsumoto report that the domain characterization phase is

composed of five subprocesses, business analysis, risk analysis, domain description, data identification,

and inventory preparation. Schafer, Prieto-diaz, and Matsumoto report that the data collection phase is

composed of four subprocesses, abstraction recovery, knowledge elicitation, literature review, and

analysis of context and scenarios. Schafer, Prieto-diaz, and Matsumoto report that the data analysis phase

is composed of seven subphases, identification of entities, operations, and relationships, identification of

decisions, modularization, analysis of similarity, analysis of variations, analysis of combinations, and

trade-off analysis. Shafer, Prieto-diaz, and Matsumoto report that the taxonomic classification phase is

composed of six subphases, clustering, abstraction, classification, generalization, and vocabulary

construction.

Table 9: DACS Software Process Improvement (SPI) Strategies

Process Definition Goal Subprocesses

1989 CMM Level 2 CMM Level 3 Organizational Software Engineering Policy

Organizational Software Engineering Procedures

Software Life-Cycle Management Manual

Cross Functional Software Teams

Software Inspection Process

1992 CMM Level 3 CMM Level 4 Senior Practitioner Process Improvement Group

Senior Task Leader Process Improvement Group

Project Effort Metrics Collection Tool

Software Process and Quality Metrics Handbook

1994 CMM Level 4 CMM Level 5 Defect Prevention Working Group

Defect Prevention Handbook

Chief Software Engineer Group Expansion

Project Kickoff (to begin CMM Level 5)

Project Self Assessments

Level 5 Software Metrics Collection Tool

Double Process Improvement Group

Process and Technology Change Handbooks

Weekly CMM Level 5 Improvement Meetings

1995 CMM Level 5 CMM Level 5 Focus on Improving New Projects

Assess Intent of CMM for Each New Project

Emphasize Productivity, Quality, and Cycle time

Management and Staff Commitment and Belief

29A DACS State-Of-The-Art Report

Lim (1998) reports that Hewlett Packard’s Manufacturing Division and Technical Graphics Division used

Software Reuse as a SPI strategy from 1983 to 1994. Lim reports that HP’s Software Reuse process is

composed of four major activities (see Table 11). Lim identifies HP’s four major Software Reuse activities

as managing the reuse infrastructure, producing reusable assets, brokering reusable assets, and consuming

reusable assets. Lim reports that producing reusable assets consists of analyzing domains, producing

assets, and maintaining and enhancing assets. Lim reports that brokering reusable assets consists of

assessing assets for brokering, procuring assets, certifying assets, adding assets, and deleting assets.

Finally, Lim reports that consuming reusable assets consists of identifying system and asset requirements,

locating assets, assessing assets for consumption, and integrating assets.

Table 10: Software Reusability and Domain Analysis Methods

Process Subprocess McCain Prieto Simos King Jaworski Lubars Vitaletti Bailin

Characterize Business Analysis � � � � � � �
Risk Analysis � � � � � � �
Domain Descriptions � � � � � � �
Data Identification � � � � � � �
Inventory Preparation � � � � � � �

Collect Data Abstraction Recovery � � � � � � � �
Knowledge Elicitation � � � � � � � �
Literature Review � � � � � � � �
Context Analysis � � � � � �

Analyze Data Object Analysis � � � � � � � �
Decision Identification � � �
Modularization � � � � � � � �
Similarity Analysis � � � � � � � �
Variation Analysis � � � � � � � �
Combination Analysis � � � � � � � �
Trade-off Analysis � � � � � � �

Taxonomy Clustering � � � � � � � �
Abstraction � � � � � � � �
Classification � � � � � � � �
Generalization � � � � � � �
Construct Vocabulary � � � � � �

Evaluate Validation � � � � � � �

Using Cost Benefit Analysis to Develop SPI Strategies30

Table 11: Hewlett Packard’s Software Reuse Process

Process Subprocess

Managing the Reuse Establish Rules, Roles, and Goals That Support Reuse

Designate Conventions and Standards

Approve Additions, Deletions, and Changes to the Library

Commission Component Construction

Coordinate Schedules and Resources

Align Reuse Goals to Business Goals

Establish and Award Incentives

Interpret Metrics Data

Implement Economic Models

Producing Reusable Assets Analyze Domain

Produce Assets

Maintain and Enhance Assets

Brokering Reusable Assets Assess Assets for Brokering

Procure Assets

Certify Assets

Add Assets

Delete Assets

Consuming Reusable Assets Identify System and Asset Requirements

Locate Assets

Assess Assets for Consumption

Integrate Assets

Kaplan, Clark, and Tang (1995) identified the Clean Room Methodology as a strategically important SPI

strategy in wide use throughout IBM from 1987 to 1993. Kaplan, Clark, and Tang report that the Clean

Room Methodology is composed of seven subprocesses including, function specification, usage

specification, incremental development plan, formal design and correctness verification, random test case

generation, statistical testing, and reliability certification model. Kaplan, Clark, and Tang report that the

Clean Room Methodology is built on the foundation of formal methods, formal specification, and formal

verification (see Figure 5).

Bauer, Collar, and Tang (1992) report that IBM’s AS/400 Division used ten general management

principles as a primary process improvement method from 1986 to 1990, resulting in winning the

Malcolm Baldrige National Quality Award in 1990 and creating an internationally best selling midrange

computer system (see Table 12). Bauer, Collar, and Tang report that IBM’s process improvement methods

included, choosing a visionary leader, creating a visionary team, empowerment, using cross functional

teams, segmenting your market, researching your markets, setting priorities, using parallel processes and

doing it right the first time, forming strategic partnerships, and exceeding customer expectations. Bauer,

Collar, and Tang reported that IBM created a special task force or tiger team to win the Malcolm Baldrige

National Quality Award. The tiger team studied the Baldrige Award criteria, created strategic and tactical

plans, gathered the evidence, created the application package, and submitted it three years in a row before

winning the Malcolm Baldrige National Quality Award. Bauer, Collar, and Tang report that IBM’s new

AS/400 had already drawn $14 billion in revenues for the IBM Corporation by the first time IBM

Rochester initially applied for the Malcolm Baldrige National Quality Award.

31A DACS State-Of-The-Art Report

Sulack, Lindner, and Dietz (1989) report IBM’s AS/400 Division used a measurement-intensive software

quality management life cycle as a primary SPI method from 1986 to 1989, resulting in winning the

Malcolm Baldrige National Quality Award in 1989 and creating an internationally best-selling midrange

computer system (see Table 13). Sulack, Lindner, and Dietz report that IBM’s software quality life cycle,

otherwise known as a Rayleigh life cycle reliability model-based defect removal life cycle, was composed

of four major components. Sulack, Lindner, and Dietz report that the four components included a software

process life cycle, management techniques and controls, design and development, and product

verification. Sulack, Lindner, and Dietz report that IBM’s software process life cycle consisted of broad

use of the Software Inspection Process to identify defects, an incremental software life cycle to simplify

development, and concurrent-overlapping software life cycle iterations to shorten cycle time. (These

software process life cycle elements in combination are referred to as a defect removal model-based

concurrent incremental software life cycle architecture.) Sulack, Lindner, and Dietz report that IBM’s

management techniques and controls consisted of change control or software configuration management,

design control groups to manage system-wide architecture decisions, and dependency management or

interface control groups to manage program wide communication. Sulack, Lindner, and Dietz report that

IBM’s design and development techniques consisted of establishing development objectives or milestones

to achieve goals, establishing performance design points to characterize product performance, and

utilizing usability design methods to design optimal human-computer interfaces. Sulack, Lindner, and

Dietz report that IBM’s product verification techniques consisted of a formalized four-phase test process,

milestone testing to establish user-centered testing objectives, and reuse in testing.

Figure 5. Clean Room Methodology

Using Cost Benefit Analysis to Develop SPI Strategies32

Table 12: IBM Rochester Organizational Process Improvement Strategy

Strategy Strategic Elements

1. Visionary Leaders Articulate Vision

Liberate Creative Organizational Energies

Inspire People to Perform

2. Institutionalize Vision Align Organizational Structure to Vision

Resource Strategic Organizational Structures

Empower Strategic Organizational Structures

3. Empowerment Trust People to Use Their Own Judgement

Equip, Train, and Resource People

Provide Performance Incentives and Rewards

4. Multi-Discipline Teams Form Integrated Cross-Functional Teams

Empower Cross-Functional Teams

Resource and Incentivize Cross-Functional Teams

5. Market Segmentation Select Target Markets

Focus on Target Markets

Differentiate Products and Services

6. Market Research Use Scientific Market Analysis Models and Tools

Gather, Analyze, and Model Market Data

Simulate and Predict Market Outcomes

7. Prioritize Resources Establish Priorities Based on Goals/Objectives

Rank Goals, Objectives, Markets and Incentives

Allocate and Manage Resources by Prioritization

8. Parallel Processes Reject Old, Sequential, and Step-By-Step Methods

Pursue Endeavors Concurrently

Prevent and Eliminate Defects Early

9. Strategic Partnerships Identify External Insights and Expertise

Outsource Strategic Products and Services

Focus on Core Competencies

10. Satisfy Customer Exceed Customer Expectations

Determine Customer’s Perceptions/Expectations

Use Quantitative Customer Satisfaction Models

33A DACS State-Of-The-Art Report

Table 13: IBM Rochester Software Process Improvement (SPI) Strategy

Strategy Strategic Elements

Software process life cycle Software Inspection Process

Incremental life cycle

Parallel life cycle phases

Management techniques and controls Change control techniques

Design control groups

Dependency management

Design and development Development objectives

Performance design points

Usability development

Product verification Four phase test process

Testing cycle considerations

Reuse in testing

Test automation

Test staging

Ensuring user acceptance Internal contract test teams

Independent contract testing

Communications field testing

Migration invitational

Worldwide announcement Concurrent translation

Distribution project office

Early shipment program

Kan, Dull, Amundson, Lindner, and Hedger (1994) report IBM strengthened the AS/400 Division’s

measurement-intensive software quality management life cycle with additional SPI methods from 1989 to

1994, helping IBM become ISO 9000 registered. Kan et al. reports that IBM Rochester’s SPI strategy

consisted of customer satisfaction management, in-process product quality management, post-general

availability (GA) product quality management, continuous process improvement, and performance

incentives (see Table 14).

Kan (1991 and 1995) and Kan et al. (1994) report IBM’s AS/400 Division used software metrics and

models as primary SPI methods from 1986 to 1994. Kan reports that IBM’s SPI method consisted of

using five major classes of software metrics and models (see Table 15).

The five classes of software metrics and models included software quality, reliability, quality

management, structural design, and customer satisfaction elements. Kan reports that software quality

metrics and models consisted of product quality, in-process quality, and maintenance elements. Kan

reports that reliability metrics and models consisted of exponential and reliability growth elements. Kan

reports that quality management metrics and models consisted of life cycle and testing phase elements.

Kan reports that structural design metrics and models consisted of complexity and structure elements.

Finally, Kan reports that customer satisfaction metrics and models consisted of survey, sampling, and

analysis elements. Specific software quality metrics and models reported by Kan include, defect density,

customer problems, customer satisfaction, function points, defect removal effectiveness, phase-based

defect removal model pattern, special case two-phase model, fix backlog and backlog management index,

Using Cost Benefit Analysis to Develop SPI Strategies34

fix response time, percent delinquent fixes, and fix quality. Specific software reliability metrics and

models reported by Kan include, cumulative distribution function, probability density function, Rayleigh

model, Jelinski-Moranda, Littlewood, Goel-Okumoto, Musa-Okumoto logarithmic Poisson execution, and

delayed-S and inflection-S. Specific software quality management metrics and models reported by Kan

include, Rayleigh life cycle reliability, problem tracking report, and testing phase reliability growth.

Specific structural design metrics and models reported by Kan include, source lines of code (SLOC),

Halstead’s software science, cyclomatic complexity, syntactic constructs, invocation complexity, system

partitioning, information flow, and fan-in and fan-out. Specific customer satisfaction metrics and models

reported by Kan include, in-person, phone, and mail surveys, random, systematic, and stratified sampling,

and capability, usability, performance, reliability, installability, maintainability, documentation/

information, and availability (CUPRIMDA).

 Table 14: IBM Rochester AS/400 Software Quality Management System (SQMS)

Strategy Strategic Elements

1. Customer Satisfaction Management Capability

Usability

Performance

Reliability

Installability

Maintainability

2. In-Process Product Quality Management Defect Removal Model

Software Inspection Process

Minibuilds

Defect Density Metrics

Reliability Growth Models

3. Post-GA Product Quality Management Problem Tracking

Defect Prevention Process

Expert Systems

4. Continuous Process Improvement Strong Process Discipline

Process Benchmarking

Software Maturity Assessments

Software Metrics Guidelines

Yearly Quality Targets

Object Oriented Technology

Small Teams

Workstations

ISO 9000

5. Performance Incentives General Managers Award

Monthly Quality Award

In-Process Quality Award

Long-Term Quality Award

35A DACS State-Of-The-Art Report

Table 15: IBM Rochester AS/400 Software Quality and Reliability Metrics and Models

Class Subclass Metrics and Models

Software Quality Product Quality Defect Density

Customer Problems

Customer Satisfaction

Function Points

In-Process Quality Defect Density During Machine Testing

Defect Arrival Pattern During Machine Testing

Defect Removal Effectiveness

Phase-Based Defect Removal Model Pattern

Special Case Two-Phase Model

Maintenance Fix Backlog and Backlog Management Index

Fix Response Time

Percent Delinquent Fixes

Fix Quality

Reliability Exponential Cumulative Distribution Function (CDF)

Probability Density Function (PDF)

Rayleigh

Reliability Growth Jelinski-Moranda

Littlewood

Goel-Okumoto

Musa-Okumoto Logarithmic Poisson Execution

Delayed S and Inflection S

Quality Management Life Cycle Rayleigh Life Cycle Reliability

Testing Phase Problem Tracking Report

Reliability Growth

Structural Design Complexity Source Lines of Code (SLOC)

Halstead’s Software Science

Cyclomatic Complexity

Syntactic Constructs

Structure Invocation Complexity

System Partitioning

Information Flow

Fan-In and Fan-Out

Customer Satisfaction Survey In-Person, Phone, and Mail

Sampling Random, Systematic, and Stratified

Analysis CUPRIMDA

Using Cost Benefit Analysis to Develop SPI Strategies36

Kan, Basili, and Shapiro (1994) conducted a survey of software process and quality improvement

methods from the perspective of IBM, the University of Maryland—College Park, and NASA Goddard

Space Flight Center’s (GSFC) Software Engineering Laboratory (SEL). Kan’s, Basili’s, and Shapiro’s

survey identified five broad classes of SPI methods (see Table 16).

Kan, Basili, and Shapiro reported the five classes to be total quality management, customer focus, process

and technology, organizational behavior, and measurement and analysis. According to Kan, Basili, and

Shapiro, total quality management consists of individual, industry, and academia, customer focus consists

of needs analysis, product evolution, and customer burn-in, process and technology consists of

Table 16: IBM Rochester, University of Maryland, and NASA GSFC Quality Survey

Class Subclass Specific Technique

Total Quality Management Individual Philip Crosby

W. Edwards Deming

Armand V. Feigenbaum

Kaoru Ishikawa

J. M. Juran

Industry Malcolm Baldrige National Quality Award

Motorola Six Sigma Strategy

IBM Market Driven Quality

Hewlett Packard Total Quality Control

Capability Maturity Model

Lean Enterprise Management

Academia Quality Improvement Paradigm

Experience Factory

Goal Question Metric

Customer Focus Needs Analysis Computer Aided Software Engineering

Quality Function Deployment

Rapid Throwaway Prototyping

Product Evolution Iterative Enhancement and Development

Small Team Approach

Customer Burn-In Early Customer Feedback

IBM Customer Quality Partnership Program

Process and Technology Prevention Defect Prevention Process

Appraisal Design Reviews

Software Inspection Process

Walk throughs

Formal Methods Vienna Development Method

Z Notation

Input/Output Requirements Language

Clean Room Methodology

Design Paradigms Object Oriented Design and Programming

Computer Aided Software Engineering

Software Reuse

Organizational Behavior Management Leadership and Empowerment

Measurement and Analysis Software Metrics Quality, Reliability, and Structural Design

37A DACS State-Of-The-Art Report

prevention, appraisal, formal methods, and design paradigms, organizational behavior includes

management, and measurement and analysis includes software metrics. Total quality management

techniques are reported to include, Philip Crosby’s, W. Edward Deming’s, Armand V. Feigenbaum’s,

Kaoru Ishikawa’s, J. M. Juran’s, Malcolm Baldrige National Quality Award, IBM Market Driven Quality,

Hewlett Packard Total Quality Control, Capability Maturity Model, Lean Enterprise Management, Quality

Improvement Paradigm, Experience Factory, and Goal Question Metric. Customer focus techniques are

reported to include, Computer Aided Software Engineering, Quality Function Deployment, Rapid

Throwaway Prototyping, Iterative Enhancement and Development, Small Team Approach, Early

Customer Feedback, and IBM Customer Quality Partnership Program. Process and technology is reported

to include, Defect Prevention Process, Design Reviews, Software Inspection Process, Walk throughs,

Vienna Development Method, Z Notation, Input/Output Requirements Language, Clean Room

Methodology, Object Oriented Design and Programming, Computer Aided Software Engineering, and

Software Reuse. Organizational behavior and measurement and analysis are reported to include

Leadership and Empowerment and Quality, Reliability, and Structural Design.

Jones (1985), Mays, Jones, Holloway, and Studinski (1990), and Gale, Tirso, and Burchfield (1990) report

that IBM Communication Systems designed a software defect prevention process (circa 1980 to 1984),

resulting in the invention of IBM’s most “powerful” SPI method used by IBM worldwide (Kaplan, Clark,

and Tang, 1995). Jones reports that IBM’s SPI method consists of five components, stage kickoff

meetings, causal analysis meetings, action databases, action teams, and repositories (see Figure 6). Jones

reports that stage kickoff meetings are held to remind the stage participants of common errors to avoid.

Jones reports that causal analysis meetings are held after the stage is complete to review the defects

Figure 6. IBM Research Triangle Park Defect Prevention

Using Cost Benefit Analysis to Develop SPI Strategies38

Figure 7. IBM’s Orthogonal Defect Classification (ODC) Process

committed during the stage, and plan defect prevention. Jones reports that an action database is used to

formally capture and manage defect prevention measures identified by causal analysis meetings. Jones

reports that action teams meet to implement suggestions identified by causal analysis meetings. Finally,

Jones reports that a repository is used to store actions for stage kickoff meetings.

Chillarege, Bhandari, Chaar, Halliday, Moebus, Ray, and Wong (1992), Bhandari, Halliday, Chaar,

Chillarege, Jones, Atkinson, Lepori-Costello, Jasper, Tarver, Lewis, and Yonezawa (1994), Bassin,

Kratschmer, and Santhanam (1998), and Mendonca, Basili, Bhandari, and Dawson (1998) describe

Orthogonal Defect Classification (ODC) as a SPI method (see Figure 7). Chillarege et al. and Bhandari et

al. report that IBM’s Thomas J. Watson Research Center created ODC to perfect and automate defect

identification, classification, and prevention.

Chillarege et al. and Bhandari et al. report that ODC is a seven step process of identifying defects,

identifying defect triggers, correcting defects, identifying defect types, performing attribute focusing,

identifying process improvements, and improving processes. Chillarege et al. and Bhandari et al. report

that identifying defects is primarily a result of software verification and validation processes such as the

Software Inspection Process, software testing, and even ad hoc sources such as customer discovery.

Chillarege et al. and Bhandari et al. report that identifying defect triggers is a process of identifying the

activity that was being carried out when the defect was discovered, such as the Software Inspection

39A DACS State-Of-The-Art Report

Process, unit testing, function testing, and system testing. Chillarege et al. and Bhandari et al. report that

correcting defects is a process of repairing the discovered problem, often times associated with the

Rework Phase of the Software Inspection Process. Chillarege et al. and Bhandari et al. report that

identifying defect types is a process of identifying the kind of defect that was discovered during structured

and ad hoc software verification and validation, such as assignment/serialization, checking, algorithm/

method, function/class/object, timing/serialization, interface/OO messages, and relationship. Chillarege et

al. and Bhandari et al. report that performing attribute focusing is a process of developing defect trigger

attribute distributions which determine the effectiveness of individual software verification and validation

activities, and defect type attribute signatures which determine the health of the software work product at

any given stage of development. Chillarege et al. and Bhandari et al. report that identifying process

improvements is both an automatic and manual process of determining what needs to be done to correct a

deficient product and the means of long term process correction based on defect trigger attribute

Table 17: IBM Houston NASA Space Shuttle Software Process Improvement (SPI)

Period Strategy Specific Technique

1970s Project Management Requirements Analysis

Software Architecture Review Board

Schedule Measurement

Cost Measurement

Quality Assurance Problem Report Tracking

Design Reviews

Code Reviews

Testing Independent Testing

Simulation Testing

Testing on Actual Flight Hardware

1980s Configuration Management Customer Configuration Control Board

Support Software Board

Discrepancy Report Board

Requirements Review Board

Life Cycle Management Requirements Planning

Incremental Release Strategy

Independent Verification

Process Assessments NASA Excellence Award

Malcolm Baldrige National Quality Award

IBM Quality Award

SKI Capability Maturity Model for Software

Software Quality Management Defect Density Metrics

Software Inspection Process

Defect Prevention Process

Software Reliability Modeling

Organizational Improvement Requirements Analysis Process

Software Inspection Process

1990s Software Process Enactment Automated Software Metrics

Automated Testing

Process Ownership Teams Requirements, Design, and Code Teams

Development and Independent Test Teams

Using Cost Benefit Analysis to Develop SPI Strategies40

distributions and defect type attribute signatures. Chillarege et al. and Bhandari et al. report that

improving processes is a manual process of correcting software management and development processes

to prevent software process and product failures.

Billings, Clifton, Kolkhorst, Lee, and Wingert (1994) report that IBM Houston’s NASA Space Shuttle

program used a measurement-intensive software quality management life cycle as a primary SPI method

from 1976 to 1993, resulting in CMM Level 5, NASA Excellence Award, IBM Best Software Lab, and

IBM Silver Level (see Table 17).

Billings, Clifton, Kolkhorst, Lee, and Wingert report that IBM Houston’s SPI strategy consisted of ten

principle elements, project management, quality assurance, testing, configuration management, life cycle

management, process assessments, software quality management, organizational improvement, software

process enactment, and process ownership teams. Project management is reported to have consisted of

requirements analysis, a Software Architecture Review Board, schedule measurement, and cost

measurement. Quality assurance is reported to have consisted of problem report tracking, design reviews,

and code reviews. Testing is reported to have consisted of independent testing, simulation testing, and

testing on actual flight hardware. Configuration management is reported to have consisted of a Customer

Configuration Control Board, a Support Software Board, a Discrepancy Report Board, and a

Requirements Review Board. Life cycle management is reported to have consisted of requirements

planning, an incremental release strategy, and independent verification. Process assessments are reported

to have consisted of pursuit and receipt of the NASA Excellence Award, pursuit of the Malcolm Baldrige

National Quality Award, pursuit and receipt of the IBM Quality Award, and pursuit of the SEI Capability

Maturity Model for Software (CMM), receiving a CMM Level 5 rating. Software quality management is

reported to have consisted of the use of defect density metrics, the Software Inspection Process, the

Defect Prevention Process, and software reliability modeling. Organizational improvement is reported to

have consisted of scaling up the requirements analysis process and the Software Inspection Process

organization wide. Software process enactment is reported to have consisted of automated software

metrics and automated testing. Process ownership teams are reported to have consisted of requirements,

design, code, development, and independent test teams.

Figure 8. Family of Seven Personal Software Process (PSP) Life-Cycles

41A DACS State-Of-The-Art Report

Humphrey (1995, 1996, 1997, 1998a, and 1998b), Ferguson, Humphrey, Khajenoori, Macke, and Matvya

(1997), Hays and Over (1997), and Webb and Humphrey (1999) report that the Software Engineering

Institute (SEI) created the Personal Software Process (PSP) as a quantitative SPI method in the late 1980s

and early 1990s. Humphrey reports that the PSP is a family of seven software life cycles, PSP0 Personal

Measurement, PSP0.1 Personal Measurement, PSP1 Personal Planning, PSP1.1 Personal Planning, PSP2

Personal Quality, PSP2.1 Personal Quality, and PSP3 Cyclic Development (see Figure 8).

PSP0, Personal Measurement, consists of the current process, time recording, and defect recording.

PSP0.1, Personal Measurement, adds a coding standard, size measurement, and a process improvement

plan. PSP1, Personal Planning, adds size estimating and test reporting. PSP1.1, Personal Planning, adds

task planning and schedule planning. PSP2, Personal Quality, adds code reviews and design reviews.

PSP2.1, Personal Quality, add design templates. And, PSP3, Cyclic Development, adds iteration.

PSP3, Cyclic Development consists of five phases or stages, Planning, High Level Design, High Level

Design Review, Development, and Postmortem (see Figure 9).

Planning consists of program requirements, size estimate, cyclic development strategy, resource

estimates, task/schedule planning, and a defect estimate. High Level Design consists of external

specifications, module design, prototypes, development strategy and documentation, and an issue tracking

log. High Level Design Review consists of design coverage, state machine, logic, design consistency,

reuse, and development strategy verification, and defect fixes. Development consists of module design,

design review, coding, code review, compile, test, and reassessment/recycling. Postmortem consists of

tracking defects, size, and time.

Figure 9. Personal Software Process (PSP) 3-Cycle Development Life-Cycle

Using Cost Benefit Analysis to Develop SPI Strategies42

Grady (1997) reports that Hewlett Packard Divisions align SPI strategies with core competencies (see

Table 18). One Hewlett Packard Division identified its core competencies as quality control, process

execution and predictability, and product enhancing, updates, and delivery. The quality control core

competency consisted of five SPI solutions, quality planning, defect tracking, inspections, reliability

modeling, and regression testing. The process execution and predictability core competency consisted of

process definition, project planning, product architecture/design, defect tracking, failure analysis, the

Software Inspection Process, software configuration management, and a release process. The product

enhancing, updates, and delivery core competency consisted of defect tracking, software configuration

management, on-line support, customer feedback capture, and installation automation.

Grady (1997) goes on to report that Hewlett Packard developed a standard portfolio of SPI strategies (see

Table 19). Hewlett Packard’s SPI strategy portfolio consists of eleven individual SPI strategies or tactics,

product definition improvement, detailed design methods, rapid prototyping, systems design

improvements, the Software Inspection Process, software reuse, complexity analysis, configuration

management, a certification process, software asset management, and program understanding.

Grady (1997), Barnard and Price (1994), Grady and Van Slack (1994), Weller (1993), Russell (1991),

Sulack, Lindner, and Dietz (1989), and Fagan (1986 and 1976) report that Hewlett Packard, AT&T Bell

Laboratories, Bull HN Information Systems, and IBM used the Software Inspection Process as a SPI

strategy. Fagan reports that the Software Inspection Process is a highly structured technique for

identifying and removing defects from intermediate software work products by team evaluation (see

Figure 10). While technically the Software Inspection Process is a product appraisal process typically

associated with late and ineffective final manufacturing inspections, the Software Inspection Process can

be performed throughout a software product life cycle, including the very early stages. Fagan reports that

the Software Inspection Process was invented by IBM in 1972, and is composed of six major

subprocesses, Planning, Overview, Preparation, Meeting, Rework, and Follow-up. Planning is to

determine whether an intermediate software work product is ready for team evaluation and to plan the

team evaluation. Overview is to introduce the software work product to the team for later evaluation.

Table 18: Hewlett Packard Divisional Software Process Improvement (SPI) Strategy

Core Competency Strategy Advantage/Need

Quality Control Quality Planning Quality prioritization

Defect Tracking Quality focus and prioritization

Software Inspection Process Inspect all specifications and designs

Reliability Modeling Tune model to different applications

Regression Testing Reduce time to do

Process Execution Process Definition Obtain ISO 9000 certification

Project Planning Create recommended model

Product Architecture/Design Create better design

Defect Tracking Quality focus and prioritization

Failure Analysis Assign ownership for action

Software Inspection Process Inspect all specifications and designs

Configuration Management Upgrade to supported model

Release Process Document and standardize

Product Enhancement Defect Tracking Quality focus and prioritization

Configuration Management Upgrade to supported model

On-Line Support Use full response-center resources

Customer Feedback Capture Create portfolio of customer surveys

Installation Automation Eliminate all need for hand holding

43A DACS State-Of-The-Art Report

Preparation is for team members to individually review and evaluate the software work product. Meetings

are to conduct the team evaluation of the software work product and identify defects. Rework is to repair

defects in the software work product identified by the team inspection. Finally, Follow-ups are to

determine whether the defects were repaired and certify the software work product as inspected. Fagan

reports that the Software Inspection Process is a concisely defined, step-by-step, and time-constrained

process with very specific objectives.

 Table 19: Hewlett Packard Corporate Software Process Improvement (SPI) Strategies

Strategy Applicability

Product Definition Improvement Organizations that create new products

Detailed Design Methods Systems with many interfaces

Rapid Prototyping Complex user interface and applications

Systems Design Improvements Chronic schedule slips due to design issues

Software Inspection Process All projects

Software Reuse Stable environment/configuration management

Complexity Analysis Systems software and firmware

Configuration Management Large and complex software product portfolio

Certification Process All projects

Software Asset Management Divisions with old existing code

Program Understanding All maintenance and porting projects

Figure 10. Software Inspection Process

Using Cost Benefit Analysis to Develop SPI Strategies44

Cusumano (1991) reports that the Massachusetts Institute of Technology (MIT) Sloan School of

Management conducted a study of the four largest Japanese computer and software manufacturers from

1985 to 1989, yielding eleven common SPI strategies used by Fujitsu, NEC, Hitachi, and Toshiba (see

Table 20). Japan’s SPI strategies included, strategic management and integration, planned economies of

scope, commitment to process improvement, product-process focus and segmentation, process-quality

analysis and control, tailored and centralized process R&D, skills standardization and leverage, dynamic

standardization, systematic reusability, computer-aided tools and integration, and incremental product/

variety improvement.

Table 20: Hitachi, Toshib,. NEC, and Fujitsu Software Process Improvement (SPI)

Time frame Strategy Specific Technique

Mid 1960s Strategic Management and Integration Establishment of process improvement agendas

Facility establishment focused on single products

Skill, standard, method, tool, and reuse tailoring

Planned Economies of Scope Developing a series of products within a facility

Deliberate sharing of resources across projects

Standard, method, tool, and product sharing

Commitment to Process Improvement Long-term process improvement commitment

Serious commitment from top managers

Policy, control, and incentive instituted

Early 1970s Product-Process Focus and Segmentation Focus on particular types of products

Knowledge accumulation for applications

Process segmentation and work channelization

Skills Standardization and Leverage Extensive training of all new recruits

Training in standard process, methods and tools

Capability improvement for process and quality

Late 1970s Process-Quality Analysis and Control Predictability in cost and scheduling

Defect control

Standard processes, methods, and tools

Tailored and Centralized Process R&D Division and facility process R&D centralization

Centralized tool and methodology R&D

Joint research between central laboratories

Early 1980s Dynamic Standardization Periodic review and change of standards

Tool and technique refinement

Standards for personnel performance

Mid 1980s Systematic Reusability Reuse tools, libraries, rewards, and controls

Systematic component reuse across products

Management planning, controls, and incentives

Computer-Aided Tools and Integration Computer-aided software engineering tools

Project, data, reuse, quality, and analysis tools

Extensive tool and method integration

Late 1980s Incremental Product/Variety Improvement Product design and performance upgrading

Strong focus on design

Product variety expansion in individual factories

45A DACS State-Of-The-Art Report

Cusumano and Selby (1995 and 1997) report that the Massachusetts Institute of Technology (MIT) Sloan

School of Management conducted a case study of software management at the Microsoft Corporation

from 1993 to 1995. Cusumano and Selby, identified seven major management strategies used by

Microsoft (see Table 21). The seven strategies are, find smart people who know the technology, organize

small teams of overlapping functional specialists, pioneer and orchestrate evolving mass markets, focus

creativity by evolving features and “fixing” resources, do everything in parallel with frequent

synchronizations, improve through continuous self-critiquing, feedback, and sharing, and attack the

future.

Table 21: Microsoft Software Process Improvement (SPI) Strategies

Strategy Specific Technique

Find Smart People Hire a CEO with a deep understanding of both the technology and the business

Organize flexibly around and across product markets and business functions

Hire the smartest managers you can find

Hire the smartest employees you can find

Organize Small Teams Establish functional specialties, work in small teams and overlap responsibilities

Let functional experts define and hire for their technical specialties

Educate new hires through learning by doing and mentoring

Create career paths and “ladder levels” to retain and reward technical people

Evolve Mass Markets Enter evolving mass markets early or stimulate new markets with good products

Incrementally improve new products and make old products obsolete

Push volume sales and exclusive contracts to ensure products become standards

Take advantage of being the standards provider with new products

Integrate, extend, and simplify products to reach new mass markets

Evolve Product Features Divide large projects into multiple milestone cycles with no maintenance cycles

Use a vision statement and outline specification of features to guide projects

Base feature selection and prioritization on user activities and data

Evolve a modular and horizontal design architecture with a mirror organization

Control by individual commitments to small tasks and “fixed” project resources

Parallelize Activities Work in parallel teams, but “synch up” and debug daily

Always have products you can theoretically ship with versions for every market

Speak a common language on a single development site

Continuously test the product as you build it

Use metric data to determine milestone completion and product release

Continuous Self Critique Systematically learn from past and present projects and products

Encourage feedback and improvement with quantitative metrics and benchmarks

View customer support as part of the product and as data for improvement

Promote linkages and sharing across product groups

Attack the Future Create products and services for consumers instead of software developers

Create up-front, per-activity, and per-transaction pricing structures

Create simple unified product and service offerings on yearly cycles

Blur the distinctions between applications, operating systems, and networks

Blur the differences between computers, televisions and cable television systems

Using Cost Benefit Analysis to Develop SPI Strategies46

Cusumano and Selby identified “synch-and-stabilize” approach as a critical Microsoft software

development strategy consisting of seven processes (see Table 22). Cusumano and Selby further report the

existence of a critically-important, eleven step daily build process.

Cusumano and Yoffie (1998) report that the Massachusetts Institute of Technology (MIT) Sloan School of

Management conducted a study of software management at the Netscape Corporation from 1996 to 1998.

Cusumano and Yoffie identified four major software management strategies in use at Netscape (see Table

23).

The four strategies consisted of, scaling an organization on Internet time, formulating judo strategy on

Internet time, designing software on Internet time, and developing software on Internet time. Scaling an

organization consists of, create a compelling, living vision of products, technologies, and markets, hire

and acquire managerial experience, in addition to technical expertise, build the internal resources for a big

company, while organizing like a small one, and build external relationships to compensate for limited

internal resources. Formulating judo strategy consists of, move rapidly to uncontested ground, be flexible

and give way when attacked directly by superior force, exploit leverage that uses the weight and strategy

of opponents against them, and avoid sumo competitions, unless you have the strength to overpower your

opponent. Designing software consists of, design products for multiple markets (platforms) concurrently,

design and redesign products to have more modular architectures, design common components that

multiple product teams can share, and design new products and features for parallel development.

Developing software consists of, adapt development priorities as products, markets, and customers

change, allow features to evolve but with frequent synchronizations and periodic stabilizations, automate

as much testing as possible, and use beta testing, internal product usage, and other measures to improve

product and process quality.

Table 22: Microsoft Synch-and-Stabilize Software Development Approach

Software Development Strategy

Product development and testing done in parallel

Vision statement and evolving specification

Features prioritized and built in 3 or 4 milestone subprojects

Frequent synchronizations (daily builds) and intermediate stabilizations (milestones)

• Check Out: Check out private copies of the source code from a central master version of the source code

• Implement Feature: Implement the feature by making changes, adding, or deleting source code

• Build Private Release: Build a private version of the product using private copies of source code

• Test Private Release: Test the private release of the product to make sure the new feature works

• Synch Code Changes: Compare the private copies of source code to master versions for differences

• Merge Code Changes: Update private copies of source code with other changes to the same source code

• Build private Release: Build a private release with individual as well as group source code changes

• Test Private Release: Test the private release to make sure that newly implemented features work

• Execute Quick Test: Execute a highly automated “smoke test” on the private release of source code

• Check In: Check in source code if the private release and quick test are successful

• Generate Daily Build: “Build Master” generates complete build using central master source code version

“Fixed” release and ship dates and multiple release cycles

Customer feedback continuous in the development process

Product and process design so that large teams work like small teams

47A DACS State-Of-The-Art Report

Tingey (1997) of the IBM Corporation in New York, New York conducted an analysis of three leading

international quality management systems (QMS), identifying three major SPI strategies. Tingey

identified the Malcolm Baldrige National Quality Award, the International Organization for

Standardization (ISO) 9001, and the Software Engineering Institute’s (SEI’s) Capability Maturity Model

(CMM) for Software (see Table 24). The Malcolm Baldrige National Quality Award is composed of seven

components, Leadership, Information and Analysis, Strategic Planning, Human Resource Development

and Management, Process Management, Business Results, and Customer Focus and Satisfaction. ISO

9001 is composed of twenty components, the first ten of which are Management Responsibility, Quality

System, Contract Review, Design Control, Document/Data Control, Purchasing, Control of Customer-

Supplied Product, Product Identification and Traceability, Process Control, and Inspection and Testing.

The last ten ISO 9001 components are Control of Inspection, Measuring, and Test Equipment, Inspection

and Test Status, Control of Nonconforming Product, Corrective and Preventative Action, Handling,

Storage, Packaging, Preservation, and Delivery, Control of Quality Records, Internal Quality Audits,

Training, Servicing, and Statistical Techniques. The SEI’s CMM is composed five components or Levels,

Initial, Repeatable, Defined, Managed, and Optimizing.

The last ten ISO 9001 components are Control of Inspection, Measuring, and Test Equipment, Inspection

and Test Status, Control of Nonconforming Product, Corrective and Preventative Action, Handling,

Storage, Packaging, Preservation, and Delivery, Control of Quality Records, Internal Quality Audits,

Training, Servicing, and Statistical Techniques. The SEI’s CMM is composed of five components or

Levels, Initial, Repeatable, Defined, Managed, and Optimizing.

Table 23: Netscape Principles for Competing on Internet Time

Strategy

Scaling an Organization on Internet Time

• Create a compelling, living vision of products, technologies, and markets that is tightly linked to action

• Hire and acquire managerial experience, in addition to technical expertise

• Build the internal resources for big company, while organizing like a small one

• Build external relationships to compensate for limited internal resources

Formulating Judo Strategy on Internet Time

• Move rapidly to uncontested ground in order to avoid head-to-head combat

• Be flexible and give way when attacked directly by superior force

• Exploit leverage that uses the right and strategy of opponents against them

• Avoid sumo competitions, unless you have the strength to overpower your opponent

Designing Software on Internet Time

• Design products for multiple markets (platforms) concurrently

• Design and redesign products to have more modular architectures

• Design common components that multiple product teams can share

• Design new products and features for parallel development

Developing Software on Internet Time

• Adapt development priorities as products, markets, and customers change

• Allow features to evolve but with frequent synchronizations and periodic stabilizations

• Automate as much testing as possible

• Use beta testing, internal product usage, and other measures to improve product and process quality

Using Cost Benefit Analysis to Develop SPI Strategies48

Table 24: ISO 9001, Malcolm Baldrige and Capability Model Elements

ISO 9001 Malcolm Baldrige Capability Maturity Model

Management Responsibility LEADERSHIP INITIAL

Quality System • Senior Executive Leadership • N/A

Contract Review • Leadership System and Organization

Design Control • Public/Corporate Citizenship REPEATABLE

Document and Data Control • Requirements Management

Purchasing INFORMATION AND ANALYSIS • Software Project Planning

Control of Customer-Supplied Product • Management of Information and Data • Software Project Tracking/Oversight

Product Identification and Traceability • Competitive Compare/Benchmark • Software Subcontract Management

Process Control • Analysts and Uses of Company Data • Software Quality Assurance

Inspection and Testing • Software Configuration Management

Control of Inspection/Test Equipment STRATEGIC PLANNING

Inspection and Test Status • Strategy Development DEFINED

Control of Nonconforming Product • Strategy Deployment • Organization Process Focus

Corrective and Preventative Action • Organization Process Definition

Handling/Storage/Packaging/Delivery HUMAN RESOURCES • Training Program

Control of Quality Records • Human Resource Planning/Evaluate • Integrated Software Management

Internal Quality Audits • High Performance Work Systems • Software Product Engineering

Training • Employee Education and Training • Intergroup Coordination

Servicing • Employee Well-Being/Satisfaction • Peer Reviews

Statistical Techniques

PROCESS MANAGEMENT MANAGED

• Design/introduction Product/Service • Quantitative Process Management

• Product/Service Production/Delivery • Software Quality Management

• Support Service

• Management of Supplier Performance OPTIMIZING

• Defect Prevention

BUSINESS RESULTS • Technology Change Management

• Product and Service Quality Results • Process Change Management

• Operational/Financial Results

• Supplier Performance Results

CUSTOMER SATISFACTION

• Customer and Market Knowledge

• Customer Relationship Management

• Customer Satisfaction Determination

• Customer Satisfaction Results

• Customer Satisfaction Comparison

49A DACS State-Of-The-Art Report

Harrington (1995) identifies six major organizational improvement strategies, Total Cost Management,

Total Productivity Management, Total Quality Management, Total Resource Management, Total

Technology Management, and Total Business Management (see Table 25).

Table 25: Organizational Improvement Strategies

Strategy Element, Component, Activity, Method, or Technique

Total Cost Management Activity-Based Costing (ABC)

Just-in-Time (JIT) Cost Accounting

Process Value Analysis (PVA)

Performance Management

Responsibility Accounting

Integrated Financial Reporting

Poor-Quality Cost

Total Productivity Management Lessening of government regulations

Invest in capital equipment

Invest in research and development

Make all management aware of the problem

Make effective use of creative problem solving

Increase use of automation and robotics

Increase teamwork and employee involvement

Expand international markets

Do the job right the first time

Total Quality Management Start with top management involvement

Educate all levels of management

Understand your external customer’s requirements

Prevent errors from occurring

Use statistical methods to solve problems and control processes

Train all employees in team and problem-solving methods

Focus on the process as the problem, not the people

Have a few good suppliers

Establish quality and customer-related measurements

Focus on the internal as well as external customers

Use teams at all levels to solve problems and make decisions

Total Resource Management Aggressive employee training and empowerment

Effective and efficient inventory management

Optimal floor space management

Total Technology Management Use the most advanced technology

Focus on applied research

Use concurrent engineering

Capitalize on using information technology (IT)

Total Business Management Product and service diversification analysis

Consolidation analysis

Product support analysis

Technology analysis

Business-line analysis

Investment analysis

Using Cost Benefit Analysis to Develop SPI Strategies50

Total Cost Management (TCM) is composed of seven tools, Activity-Based Costing (ABC), Just-in-Time

(JIT) Cost Accounting, Process Value Analysis (PVA), performance management, responsibility

accounting, integrated financial reporting, and poor-quality cost. Total Productivity Management (TPM)

is composed of nine steps, the first four of which are lessening of government regulations, invest in

capital equipment, invest in research and development, and make all management aware of the problem.

The last five Total Productivity Management (TPM) steps are, make effective use of creative problem

solving, increase use of automation and robotics, increase teamwork and employee involvement, expand

international markets, and do the job right the first time. Total Quality Management (TQM) is composed

of eleven elements, the first five of which are, start with top management involvement, educate all levels

of management, understand your external customer’s requirements, prevent errors from occurring, and

use statistical methods to solve problems and control processes. The last six TQM steps are, train all

employees in team and problem-solving methods, focus on the process as the problem, have a few good

suppliers, establish quality and customer-related measurements, focus on the internal as well as external

customers, and use teams at all levels to solve problems. Total Resource Management (TRM) is

comprised of three elements, aggressive employee training and empowerment, effective and efficient

inventory management, and optimal floor space management. Total Technology Management (TTM) is

comprised of four activities, use the most advanced technology, focus on applied research, use concurrent

engineering, and capitalize on using information technology (IT). Total Business Management (TBM)

consists of six elements, product and service diversification analysis, consolidation analysis, product

support analysis, technology analysis, business-line analysis, and investment analysis.

McConnell (1996) conducted an analysis of software management and development best practices or SPI

strategies, identifying twenty-seven individual strategies (see Table 26).

Table 26: Steve McConnell’s Software Best Practices

Strategy Specific Technique

Change Board An approach to controlling changes to a software product
Daily Build and Smoke Test A process in which a software product is completely built every day
Designing for Change Designing a software product for easy maintenance programming
Evolutionary Delivery A balance between staged delivery and evolutionary Prototyping
Evolutionary Prototyping A life cycle model in which the system is developed in increments
Goal Setting Establishment and commitment to a small, clear set of goals
Software Inspection Process Product appraisal process optimized for software defect identification
Joint Application Development A requirements-definition and user-interface design methodology
Life Cycle Model Selection Use of a software life cycle contingency model
Measurement The use of software metrics, models, and measurements
Miniature Milestones A fine-grained approach to software project tracking and control
Outsourcing Paying an outside organization to develop a software product
Principled Negotiation Strategy for improved communications and creation of win-win options
Productivity Environments The use of private, noise-free office space for software developers
Rapid-Development Languages High productivity, fourth generation programming languages
Requirements Scrubbing The elimination of complex software requirements from specifications
Reuse The development and use of prefabricated software source code
Signing Up Process of building individual and team esteem and belief in a project
Spiral Life Cycle Model Life cycle model involving iteration, risk management and prototyping
Staged Delivery A life cycle model in which software is developed in stages
Theory-W Management Establishment of a software project in which all stakeholders benefit
Throwaway Prototyping Production of temporary software models for requirements elicitation
Timebox Development A construction-time practice that helps to infuse a sense of urgency
Tools Group Organization responsible for identifying software development tools
Top-10 Risks List Managing projects based on prioritizing critical problem areas
User-lnterface Prototyping Use of temporary user interface models for eliciting requirements
Voluntary Overtime Motivation of software developers to work hard for intangible rewards

51A DACS State-Of-The-Art Report

The first thirteen SPI strategies are, Change Boards, Daily Builds, Designing for Change, Evolutionary

Delivery, Evolutionary Prototyping, Goal Setting, Inspections, Joint Application Development, Life Cycle

Model Selection, Measurement, Miniature Milestones, Outsourcing, and Principled Negotiation. The last

14 SPI strategies are, Productivity Environments, Rapid-Development Languages, Requirements

Scrubbing, Reuse, Signing Up, Spiral Life Cycle, Staged Delivery, Theory-W Management, Throwaway

Prototyping, Timebox Development, Tools Group, Top-10 Risks List, User-Interface Prototyping, and

Voluntary Overtime.

Kaplan, Clark, and Tang (1995) report that IBM’s Santa Teresa software development laboratories in

Silicon Valley, California, used 40 innovations or SPI strategies from 1989 to 1995, resulting in the award

of IBM’s highest and most prestigious quality award, IBM’s gold medal for excellence (see Table 27).

Table 27: IBM Santa Teresa Software Process Improvement (SPI) Strategies

Baldrige Stage Leadership Category Process Category Technology Category

Awareness The Excellence Council Programming Handbooks Satisfaction Surveys

Departmental Quality Strategy Extended Unit Testing Joint Application Development

Seminar Series Process Modeling Methods

The Leadership Institute

Quality Publications

Coping Center for Software Excellence ISO 9000 Error-Prone Module Analysis

The Council System Software Inspection Process High-Risk Module Analysis

Early Test Involvement Customer Survey Data Analysis

Combined Line Item Test

Management Strategic Focus Defect Prevention Process Computerized Team Workspaces

Empowerment Process Benchmarking Electronic Meetings

Quality Week Analysis of the Competition On-Line Reviews

LAN Library Control System

Object-Oriented Design

Rapid Prototyping

Clean Room Methodology

Integration Continuous Improvement Reviews Quality Partnerships Performance Mining

Quality Exchanges Business Partner Quality Process Orthogonal Defect Classification

WorkForce 2000 Quality Return on Investment

The first ten SPI strategies are, The Excellence Council, Departmental Quality Strategies, Seminar Series,

The Leadership Institute, Quality Publications, Programming Development Handbooks, Extended Unit

Testing, Satisfaction Surveys, Joint Application Development, and Process Modeling Methods and Tools.

SPI strategies eleven through twenty are, The Center for Software Excellence, The Council System, an

ISO 9000 strategy, Rigorous Code Inspections, Early Test Involvement, Combined Line Item and

Function Test, Error-Prone Module Analysis, High-Risk Module Analysis, Customer Survey Data

Linkage Analysis, and Strategic Focus. SPI strategies twenty-one through thirty are, Empowerment,

Quality Week, Defect Prevention, Process Benchmarking, Analysis of the Competition, Computer-

Supported Team Work Spaces, Electronic Meetings, On-line Reviews, Local Area Network Library

Control Systems, and Object-Oriented Design and Coding. The final ten SPI strategies are, Rapid

Prototyping, Clean Room Techniques, Continuous Improvement Reviews, Quality Exchanges, Workforce

2000, Quality Partnerships with Customers, Business Partner Quality Process, Performance Mining,

Orthogonal Defect Classification, and Quality Return-on-Investment.

Using Cost Benefit Analysis to Develop SPI Strategies52

Table 28: SEI-Identified Software Process Improvement (SPI) Strategies

Scope Strategy CMM Level Principle Key Process Area

Environment ISO 9000 3 Organization Process Definition

Interdisciplinary Group Method 3 Intergroup Coordination

Total Quality Management 3 Organization Process Focus

Software Metrics 4 Quantitative Process Management

Product Software Inspection Process 3 Peer Reviews

Software Reliability Engineering 4 Quantitative Process Management

Quality Function Deployment 4 Software Quality Management

Process Estimation 2 Software Project Planning

Software Process Assessment 3 Organization Process Focus

Process Definition 3 Organization Process Definition

Clean Room Methodology 4 Software Quality Management

CASE Tools 5 Technology Change Management

Defect Prevention Process 5 Defect Prevention

Austin and Paulish (1993) of the Software Engineering Institute (SEI) at Carnegie Mellon University

(CMU) conducted a survey of software process improvement in the early 1990s, identifying thirteen

principle strategies (see Table 28).

The thirteen SPI strategies included, estimation, ISO 9000, Software Process Assessment (SPA), process

definition, Software Inspection Process, software metrics, computer-aided software engineering (CASE),

Interdisciplinary Group Methods (IGMs), software reliability engineering, Quality Function Deployment

(QFD), Total Quality Management (TQM), the Defect Prevention Process, and the Clean Room

Methodology.

Davenport (1993) conducted a survey of organizational improvement strategies and methods at over 70

international businesses in the early 1990s, identifying two broad classes of organizational improvement

strategies, Process Improvement strategies and Process Innovation strategies (see Table 29). Process

Improvement strategies include, Activity-Based Costing (ABC), Process Value Analysis (PVA), Business

Process Improvement (BPI), Total Quality Management (TQM), and Industrial Engineering (IE).

Davenport reports that Process Innovation is an entire class unto itself that is sharply distinguished from

ordinary process improvement consisting of heavy doses of automation and information technology (IT)

to make broad-based sweeping organizational changes. The first fourteen of Davenport’s Process

Innovation strategies include, Computer Aided Software Engineering (CASE), code generation,

conferencing, conventional programming, current applications, data gathering and analysis tools, decision

analysis software, desktop graphics tools, Executive Information Systems (EIS), fourth-generation

languages, general communications technologies, group decision-support systems, hypermedia, and idea

generation tools. The second fourteen of Davenport’s Process Innovation strategies include, information

engineering, object-oriented programming, PC-based prototyping tools, process modeling tools,

programmable databases and spreadsheets, project management tools, prototyping, rapid systems

development techniques, simulation, story boarding, strategic application databases, systems

reengineering products, technology trend databases, and very high-level languages.

53A DACS State-Of-The-Art Report

Table 29: Process Innovation Strategies

Strategy Technique

Process Improvement Activity-Based Costing (ABC)

Process Value Analysis (PVA)

Business Process Improvement (BPI)

Total Quality Management (TQM)

Industrial Engineering (IE)

Process Innovation Computer Aided Software Engineering (CASE)

Code Generation

Conferencing

Conventional Programming

Current Applications

Data Gathering and Analysis Tools

Decision Analysis Software

Desktop Graphics Tools

Executive Information Systems (EIS)

Fourth-Generation Languages (4GL)

General Communications Technologies

Group Decision-Support Systems (GDSS)

Hypermedia

Idea Generation Tools

Information Engineering

Object-Oriented Programming (OOP)

PC-Based Prototyping Tools

Process Modeling Tools

Programmable Databases and Spreadsheets

Project Management Tools

Prototyping

Rapid Systems Development Techniques

Simulation

Story boarding

Strategic Application Databases

Systems Reengineering Products

Technology Trend Databases

Very High-Level Languages

Using Cost Benefit Analysis to Develop SPI Strategies54

Davenport further identifies Process Innovation strategies that accompany common organizational

functions, such as, prototyping, research processes, engineering and design processes, manufacturing

processes, logistics processes, marketing processes, sales and order management processes, service

processes, and management processes (see Tables 30 and 31).

Table 30: Process Innovation Strategies Mapped to Organizational Functions

Organizational Function Process Innovation Strategy

Prototyping Fourth Generation Languages

Object Oriented Languages

Subroutine Libraries

Databases

Spreadsheets

Hypermedia

Story boarding Packages

Code Generating CASE Tools

Research Computer-Based Laboratory Modeling

Computer-Based Field Trials

Tracking and Project Management Systems

Project Status Information Dissemination Systems

Engineering and Design Computer-Aided Design and Physical Modeling

Integrated Design Databases

Standard Component Databases

Design for Manufacturability Expert Systems

Component Performance History Databases

Conferencing Systems Across Design Functions

Cross Functional Teams

Manufacturing Linkages to Sales Systems for Build-to-Order

Real-Time Systems for Custom Configuration

Materials and Inventory Management Systems

Robotics and Cell Controllers

Diagnostic Systems for Maintenance

Quality and Performance Information

Work Teams

Logistics Electronic Data Interchange and Payment Systems

Configuration Systems

Third-Party Shipment and Location Tracking Systems

Close Partnerships with Customers and Suppliers

Rich and Accurate Information Exchange

Process Innovation strategies for prototyping include, fourth-generation languages, object-oriented

languages, subroutine libraries, databases, spreadsheets, hypermedia, story boarding packages, and code-

generating CASE tools. Process Innovation strategies for research processes include, computer-based

laboratory modeling, computer-based field trials, tracking and project management systems, and project

status information dissemination systems. Process Innovation strategies for engineering and design

processes include, computer-aided design and physical modeling, integrated design databases, standard

component databases, design-for-manufacturability expert systems, component performance history

databases, conferencing systems across design functions, and cross-functional teams. Process Innovation

strategies for manufacturing processes include, linkages to sales systems for build-to-order, real-time

55A DACS State-Of-The-Art Report

systems for custom configuration and delivery commitment, materials and inventory management

systems, robotics and cell controllers, diagnostic systems for maintenance, quality and performance

information, and work teams. Process Innovation strategies for logistics processes include, electronic data

interchange and payment systems, configuration systems, third-party shipment and location tracking

systems, close partnerships with customers and suppliers, and rich and accurate information exchange

with suppliers and customers. Process Innovation strategies for marketing processes include, customer

relationship databases/frequent buyer programs, point-of-sale systems tied to individual customer

purchases, expert systems for data and trend analysis, statistical modeling of dynamic market

environments, and close linkages to external marketing firms. Process Innovation Strategies for sales and

order management processes include, prospect tracking and management systems, portable sales force

automation systems, portable networking for field and customer site communications, and customer site

workstations for order entry and status checking. More of Process Innovation strategies for sales and order

management include, “choosing machines” that match products and services to customer needs, electronic

data interchange between firms, expert systems for configuration, shipping, and pricing, and predictive

modeling for continuous product replenishment.

Table 31: Process Innovation Strategies Mapped to Organizational Functions

Organizational Function Process Innovation Strategy

Marketing Customer Relationship Databases/Frequent Buyer Programs

Point-of-Sale Systems Tied to Individual Customer Purchases

Expert Systems for Data and Trend Analysis

Statistical Modeling of Dynamic Market Environments

Close Linkages to External Marketing Firms

Sales and Ordering Prospect Tracking and Management Systems

Portable Sales Force Automation Systems

Portable Networking for Field and Customer Site Communications

Customer Site Workstatioins for Order Entry and Status Checking

“Choosing Machines” that Match Products and Services to Customer Needs

Electronic Data Interchange Between Firms

Expert Systems for Configuration, Shipping, and Pricing

Predictive Modeling for Continuous Product Replenishment

Composite Systems that bring Cross-Functional Information to Desktops

Integration of Voice and Data

Third-Party Communications and Videotext

Case Management Roles or Teams

Empowerment of Frontline Workers

Service Real-Time, On-Site Service Delivery through Portable Workstations

Customer Database-Supported Individual Service Approaches

Service Personnel Location Monitoring

Portable Communications Devices and Network-Supported Dispatching

Built-In Service Diagnostics and Repair Notification

Service Diagnostics Expert Systems

Composite Systems-Based Service Help Desks

Management Executive Information Systems that Provide Real-Time Information

Electronic Linkages to External Partners in Strategic Processes

Computer-Based Simulations that Support Learning-Oriented Planning

Electronic Conferencing and Group Decision-Support Systems

Using Cost Benefit Analysis to Develop SPI Strategies56

The final set of Process Innovation strategies for sales and order management processes include,

composite systems that bring cross-functional information to desktops, customer, product, and production

databases, integration of voice and data, third-party communications and videotext, case management

roles or teams, and empowerment of frontline workers. Process Innovation strategies for service processes

include, real-time, on-site service delivery through portable workstations, customer database-supported

individual service approaches, service personnel location monitoring, portable communications devices

and network-supported dispatching, built-in service diagnostics and repair notification, service diagnostics

expert systems, and composite systems-based service help desks. Process Innovation strategies for

management processes include, executive information systems that provide real-time information,

electronic linkages to external partners in strategic processes, computer-based simulations that support

learning-oriented planning, and electronic conferencing and group decision-support systems. The final set

of Process Innovation strategies for management processes include, expert systems for planning an capital

allocation, standard technology infrastructure for communication and group work, standard reporting

structures and information, acknowledgment and understanding of current management behavior as a

process, and accountability for management process measurement and performance.

Maurer (1996), a Washington D.C.-based organization change consultant, identified two distinct

organization change or process improvement approaches and strategies, conventional or default, and

unconventional or resistance-embracement model (see Table 32). Conventional or default organization

change or process improvement strategies include, using power, manipulate those who oppose, applying

force of reason, ignore resistance, play off relationships, make deals, kill the messenger, and give in too

soon. Unconventional or resistance-embracement model organization change or process improvement

strategies include, maintain a clear focus, embrace resistance, respect those who resist, relax, and join

with the resistance.

Table 32: Resistance Embracement Organizational Change Strategy

Strategy Technique Description

Conventional or Default Use power Threaten adversaries into conformance

Manipulate those who oppose Deceive adversaries with half-truths

Apply force of reason Overwhelm adversaries with facts

Ignore resistance Refuse to recognize adversarial positions

Play off relationships Rely on friendships to enable change

Make deals Make mutually beneficial trade-offs

Kill the messenger Fire or destroy your adversaries

Give in too soon Give up at the first sign of resistance

Resistance-Embracement Maintain clear focus Keep long and short term view/persevere

Embrace resistance Move toward and comprehend resistance

Respect those who resist Treat people with respect and dignity

Relax Stay calm and listen without overreacting

Join with the resistance Ally and befriend adversary’s positions

Hammer (1996) identifies two forms of organizational process improvement strategies, Total Quality

Management (TQM)—incremental process redesign, and Reengineering—radical process redesign (see

Table 33). Hammer defines TQM or incremental redesign as a means of modifying processes to solve

problems that prevent them from attaining the required performance level. Hammer defines

Reengineering or radical redesign as a means of completely redesigning business processes for dramatic

57A DACS State-Of-The-Art Report

Table 33: Reengineering and Total Quality Management (TQM) Strategies

Strategy Impact Technique Description

Total Quality Management Incremental Checklists Process and procedures

Pareto Diagrams Data categorization

Histograms Bar charts/charting

Run Charts Statistical analysis

Scatter Diagrams Linear regression

Control Charts Statistical analysis

Cause-And-Effect Diagrams Root cause analysis

Reengineering Radical Process Intensification Better customer service

Process Extension Enter new markets

Process Augmentation Add more services

Process Conversion Spin-off core strengths

Process Innovation Add new offerings

Process Diversification Create new offerings

Harrington (1995) identified five international quality management and process improvement strategies

by Philip B. Crosby, W. Edwards Deming, Armand V. Feigenbaum, Joseph M. Juran, and Kaoru Ishikawa

(see Table 34).

Table 34: International Quality Management Strategies

Philip B. Crosby W. Edwards Deming Armand V. Feigenbaum Joseph M. Juran Kaoru Ishikawa

Management Commitment Nature of Variation Company-Wide Quality Market Research Quality First, not Profit

Quality Improvement

Teams Special Causes Customer-Defined Quality Product Development Consumer Orientation

Measurement Control Charts Quality and Cost are a Sum Design/Specification Customer Process Focus

Cost of Quality Interaction of Forces Individual/Team Quality Purchasing/Suppliers Use Facts and Data

Quality Awareness Losses from Decisions Quality Management Manufacturing Planning Respect for Humanity

Corrective Action Losses from Random Forces Quality with Innovation Production/Process Control Cross Function

Management

Zero Defect Planning Losses from Competition Quality Ethic Inspection and Test

Employee Education Theory of Extreme Values Continuous Improvement Marketing

Zero Defect Day Statistical Theory of Failure Productivity through Quality Customer Service

Goal Setting Theory of Knowledge Customer/Supplier Quality

Error-Cause Removal Psychology

Recognition Learning Theory

Quality Councils Transformation of Leaders

Do It Over Again Psychology of Change

improvement or completely replacing existing process designs with entirely new ones, in order to achieve

quantum leaps. Ishikawa’s seven basic tools are typically associated with Total Quality Management

(TQM), checklists, pareto diagrams, histograms, run charts, scatter diagrams, control charts, and cause-

and-effect diagrams. Reengineering is composed of process intensification, process extension, process

augmentation, process conversion, process innovation, and process diversification.

Using Cost Benefit Analysis to Develop SPI Strategies58

Crosby’s strategy includes, management commitment, quality improvement teams, measurement, cost of

quality, quality awareness, corrective action, zero defect planning, employee education, zero defect day,

goal setting, error-cause removal, recognition, quality councils, and do it over again. Deming’s strategy

includes, nature of variation, losses due to tampering, minimizing the risk from variation, interaction of

forces, losses from management decisions, losses from random forces, losses from competition, theory of

extreme values, statistical theory of failure, theory of knowledge, psychology, learning theory,

transformation of leadership, and psychology of change. Feigenbaum’s strategy includes, quality is a

company-wide process, is what the customer says, and cost are a sum, requires both individuality and

teamwork, is a way of management, and innovation are dependent, is an ethic, requires continuous

improvement, is the route to productivity, and is connected to customers and suppliers. Juran’s strategy

includes, market research, product development, product design/specification, purchasing/suppliers,

manufacturing planning, production and process control, inspection and test, marketing, and customer

service. Ishikawa’s strategy includes, quality first—not short term profit, consumer orientation—not

producer orientation, the next process is your customer, using facts and data to make presentations,

respect for humanity as a management philosophy, and cross-function management.

Davidson (1993) conducted a study of fifty firms with the support of the IBM Advanced Business

Institute in Palisades, New York. Davidson identified and developed an organizational process

improvement framework composed of three major business organizational improvement strategies or

phases, the Operating Excellence phase, Business Enhancement phase, and New Business Development

phase, characterized by unique goals, objectives, techniques, and metrics (see Table 35). The goals of the

Operating Excellence phase are cost reduction, capacity increases, organizational downsizing, yields, cost

reduction, customer satisfaction, cycle time, asset turnover, response time, retention, enhancement,

customer satisfaction, marketing sophistication, and flexible business systems. The objectives of the

Operating Excellence phase are productivity, quality, velocity, customer service, and business precision.

The techniques of the Operating Excellence phase are automation, process simplification, total quality

management, statistical quality control, just-in-time, time-based competition, electronic data interchange,

focus groups, market research, mass customization, microsegmentation, and activity-based costing. The

metrics of the Operating Excellence phase are units per person, peak output level, cost per unit, cost per

activity, revenue per employee, head count, defect rates, yields, standards and tolerances, variance, life-

cycle costs, inventory and sales, and throughput.

More metrics of the Operating Excellence phase are cycle times, and time to market, response ratios,

retention, revenue per customer, repeat purchase, brand loyalty, customer acquisition cost, referral rate,

cost of variety, number of new products, number of product, service, and delivery configurations, and

customer self-design and self-pricing flexibility. The goals of the Business Enhancement phase are

retention, enhancement, customer satisfaction, marketing sophistication, flexible business systems,

business augmentation, broader market scope, and new customer acquisition. The objectives of the

Business Enhancement phase are customer service, business precision, enhancement, and extension. The

techniques of the Business Enhancement phase are focus groups, market research, mass customization,

microsegmentation, activity-based costing, embedded information technology, turbocharging, enhanced

products and services, channel deployment, market expansion, and alliances. The metrics of the Business

Enhancement phase are retention, revenue per customer, repeat purchase, brand loyalty, customer

acquisition cost, referral rate, cost of variety, number of new products, number of product, service, and

delivery configurations, and customer self-design and self-pricing flexibility. More metrics of the

Business Enhancement phase are number of features, functions, and services, information flow to

customer, product and service revenue ratio, customer performance, secondary revenue streams, customer

diversity, number of new customers, channel diversity, new revenue sources, and broader product and

59A DACS State-Of-The-Art Report

market scope. The goals of the New Business Development phase are market value and start-up activity.

The objective of the New Business Development phase is business redefinition. The techniques of the

New Business Development phase are business development, entrepreneurialism, and spin-off units. The

metrics of the New Business Development phase are market value, new lines of business, and percent of

revenue from new units and services.

Reid (1997) conducted case studies of seven Internet and World-Wide-Web start-ups, Marc Andreessen’s

Netscape, Rob Glaser’s Progressive Networks, Kim Polese’s Java and Marimba, Mark Pesce’s Virtual

Reality Markup Language (VRML), Arial Poler’s I/PRO, Jerry Yang’s Yahoo, Andrew Anker’s HotWired,

and Halsey Minor’s CNET (see Table 36). Reid concluded that the Internet is directly responsible for

business, social, and cultural changes at unprecedented rates in scope, speed, and scale. The scope of

Internet-enabled change includes publishing, education, entertainment, banking, industrial arts, health

care, government, travel, the Olympics, employment, retailing, cellular phones, and the first amendment.

The speed of Internet-enabled change is five to ten times faster than previous technological change

intervals of five to ten years. The scale of Internet-enabled change includes instant market penetration to

hundreds of millions of users.

Table 35: Three Phases of Business Transformation

Phase Objective Technique

Operating Excellence Productivity Automation

Process Simplification

Quality Total Quality Management

Statistical Quality Control

Velocity Just-in-Time

Time-Based Competition

Electronic Data Interchange

Customer Service Focus Groups

Market Research

Business Precision Mass Customization

Microsegmentation

Activity-Based Costing

Business Enhancement Customer Service Focus Groups

Market Research

Business Precision Market Research

Mass Customization

Microsegmentation

Enhancement Embedded Information Technology

Turbocharging

Enhanced Products and Services

Extension Channel Development

Market Expansion

Alliances

New Business Development Business Redefinition Business Development

Entrepreneurialism

Spin-Off Units

Using Cost Benefit Analysis to Develop SPI Strategies60

Table 36: Internet Technologies for Organizational Change

Strategic Element Tactical Element Function

Internet Service Providers UUNET Business/Personal Websites/E-mail

NETCOM Business/Personal Websites/E-mail

P S I n e t Business/Personal Websites/E-mail

BBN Business/Personal Websites/E-mail

Digex Business/Personal Websites/E-mail

@Home Business/Personal Websites/E-mail

Equipment Cisco Network communication routers

Ascend Internet computer network equipment

Cascade Internet computer network equipment

Silicon Graphics High performance graphics computers

Sun Microsystems UNIX-based webservers

US Robotics MODEMs

Software Netscape Browsers/website administration/service

Open Market Internet commerce software

Check Point Secure enterprise networking solutions

Marimba Internet content delivery

DimensionX Website graphics technology

Intervista Website graphics technology

Enabling Services I/PRO Website traffic analysis software

Yahoo! Search engine/E-mail/business content

CyberCash Electronic commerce/transactions

InfoSeek Search engine/business content

Lycos Search engine/business content

Excite Search engine/business content

Professional Services Organic Online Business/e-commerce website design

Reid reports that five basic Internet technologies are responsible for these sweeping changes in business,

social, and cultural change, Internet service providers, Internet equipment, Internet software, Internet

enabling services, and Internet professional services. Six major Internet service providers at the time of

the study included, UUNET, NETCOM, PSInet, BBN, Digex, and @Home, providing business and

personal website and E-mail services. Six major Internet equipment companies at the time of the study

included, Cisco, Ascend, Cascade, Silicon Graphics, Sun Microsystems, and US Robotics, providing

Internet computers, networking, and communication devices and equipment. Six major Internet software

companies at the time of the study included, Netscape, Open Market, Check Point, Marimba,

DimensionX, and Invervista, providing website administration, browsers, intranet, content delivery, and

media tools and technologies. Six major Internet enabling services at the time of the study included, I/

PRO, Yahoo!, CyberCash, InfoSeek, Lycos, and Excite, providing website management, content

management, and electronic commerce tools, technologies, and services. A major Internet professional

services firm at the time of the study included Organic Online, providing website design and development

services.

61A DACS State-Of-The-Art Report

Downes and Mui (1998), directors and visiting fellows of the Diamond Exchange, an executive forum

that brings together senior executives with leading strategy, technology, and learning experts, have

developed a new approach to Strategic Planning for organizational performance improvement called

Digital Strategy. Digital Strategy is a supercharged or hypercharged form of process improvement or

reengineering, more appropriately associated with Davenport’s (1993) Process Innovation strategy or

Davidson’s (1993) Business Transformation strategy, and is composed of three major phases, Reshaping

the Landscape, Building New Connections, and Redefining the Interior (see Table 37).

Table 37: Digital Strategy for Organizational Change

Phase Description

Reshaping the Landscape Outsource to the customer

Cannibalize your markets

Treat each customer as a market segment of one

Create communities of value

Building New Connections Replace rude interfaces with learning interfaces

Ensure continuity for the customer, not yourself

Give away as much information as you can

Structure every transaction as a joint venture

Redefining the Interior Treat your assets as liabilities

Destroy your value chain

Manage innovation as a portfolio of options

Hire the children

Reshaping the Landscape phase is composed of the first four of twelve principles, outsource to the

customer, cannibalize your markets, treat each customer as a market segment of one, and create

communities of value. Building New Connections phase is composed of the next four principles, replace

rude interfaces with learning interfaces, ensure continuity for the customer, not yourself, give away as

much information as you can, and structure every transaction as a joint venture. And, finally, Redefining

the Interior phase is composed of the last four of twelve principles, treat your assets as liabilities, destroy

your value chain, manage innovation as a portfolio of options, and hire the children. Digital Strategy fully

exploits Internet economics previously outlined by Reid (1997), in order to minimize or eliminate

inefficiencies in the market caused by non-value adding organizations that manage transactions, otherwise

known as Coasian Economics (Coase 1994).

Slywotzky, Morrison, Moser, Mundt, and Quella (1999) founders, presidents, executives, and principals

of Mercer Management Consulting analyzed more than 200 firms, identifying seven categories of thirty

profit patterns which enable organizational change in order to increase market competitiveness and

profitability (see Table 38).

Using Cost Benefit Analysis to Develop SPI Strategies62

The seven categories of profit patterns or process improvement strategies included, Mega Patterns, Value

Chain Patterns, Customer Patterns, Channel Patterns, Product Patterns, Knowledge Patterns, and

Organizational Patterns. Mega Patterns are composed of six components, No Profit, Back to Profit,

Convergence, Collapse of the Middle, De Facto Standard, and Technology Shifts the Board. Value Chain

Patterns are composed of four components, Deintegration, Value Chain Squeeze, Strengthening the Weak

Link, and Reintegration. Customer Patterns are composed of four components, Profit Shift,

Microsegmentation, Power Shift, and Redefinition. Channel Patterns are composed of four components,

Multiplication, Channel Concentration, Compression and Disintermediation, and Reintermediation.

Product Patterns are composed of five components, Product to Brand, Product to Blockbuster, Product to

Profit Multiplier, Product to Pyramid, and Product to Solution. Knowledge Patterns are composed of three

components, Product to Customer Knowledge, Operations to Knowledge, and Knowledge to Product.

Organizational Patterns are composed of four components, Skill Shift, Pyramid to Network,

Cornerstoning, and Conventional to Digital Business Design.

Table 38: Profit Patterns for Organizational Performance Improvement

Category Pattern Technique

Mega No Profit Walk away or invent a new way of doing business

Back to Profit Build new business design for unmet customer needs

Convergence Identify and master new rules of competition

Collapse of the Middle Be the first to go to the extremes

De Facto Standard Create or align with emerging standards early

Technology Shifts the Board Go where the power will be

Value Chain Deintegration Dominate components of disintegrated value chain

Value Chain Analysis Improve performance faster than the competition

Strengthening the Weak Link Fix weak link with proprietary/exclusive solution

Reintegration Reintegrate profitable components of value chain

Customer Profit Shift Dynamically adjust pricing to optimize profitability

Microsegmentation Dominate profitably small segments of market

Power Shift Rebalance power or redefine customers

Redefinition Seek out profitable markets, beyond customer base

Channel Multiplication Dominate or create new business channels

Channel Concentration Innovate and create new model generations first

Compression/Disintermediation Be the first to disinvest obsolete channels

Reintermediation Accelerate investment in new channels

Product Product to Brand Build and invest in valuable brands and branding

Product to Blockbuster Create market-dominating products and services

Product to Profit Multiplier Identify top avenues for selling products/services

Product to Pyramid Cater to low to high end of vertical markets

Product to Solution Analyze and master competitor products/services

Knowledge Product to Customer Knowledge Analyze your customer transactions for patterns

Operations to Knowledge Turn proprietary processes into products/services

Knowledge to Product Identify, perfect, and sell core competencies

Organizational Skill Shift Invest in emerging skill requirements

Pyramid to Network Maximize external exposure and adapt organization

Cornerstoning Incrementally expand core products and services

Conventional to Digital Business Design Use changing technology to shed the industrial age

63A DACS State-Of-The-Art Report

Table 39: Survey of Metrics for Software Process Improvements (SPI)

Author Metric Class Metrics

Davidson Productivity, Quality, Velocity, Customer Service, Precision, Enhancement, Extension, Redefinition 39

Garrison Prevention Costs, Appraisal Costs, Internal Failure Costs, External Failure Costs 36

Kan Software Quality, Reliability, Quality Management, Structural Design, Customer Satisfaction 35

Grady Process and Product Descriptions, High-Level Process Measurements, Defect Failure Analysis 15

Daskalantonakis Planning, Containment, Reliability, Defect Density, Customer Service, Non-Conformance, Productivity 18

Barnard Cost, Cycle Time, Quality, Conformity, Efficiency, Effectiveness, Productivity 21

Florac Things Received or Used, Activities and their Elements, Things Consumed, Things Produced 80

Herbsleb Cost, Productivity, Calendar Time, Quality, Business Value 7

McGibbon Reuse, Clean Room, Inspections, Walk throughs, Traditional, Full 24

Hays Personal Software Process (PSP) 35

Jones Process Improvement, Application/System, Productivity, Cost, Quality 28

Burr Size, Complexity, Conformity, Defectiveness, Time, Cost 32

Rosenberg Personnel Resources, Software Analysis, Changes to Code 9

Rico Defect Density 6

Rico Relational Design Metrics, Object Oriented Design Metrics, Universal/Structural Design Metrics 63

Rico Planning, Overall, Review Rate, Substage Duration, Substage Interval, Substage Efficiency 39

Metrics and Models

The previous section surveyed 72 scholarly studies of software process improvement (SPI) techniques,

methods, and strategies, attempting to provide the reader with a good sense of the wide-ranging

approaches to SPI. This section examines 14 well known studies and expositions of metrics and models

for software management and engineering, and more importantly software process improvement (SPI),

identifying 74 broad metrics classes and 487 individual software metrics (see Table 39).

While Table 39 provides a quick overview of the kinds of metrics classes the 14 studies refer to, it was

necessary to reexamine and reclassify the 487 individual software metrics, based on a more consistent set

of criteria. The analysis identified 12 common classes of software metrics from the 74 broad classes

identified by the 14 sources, based on a more consistent set of criteria (see Table 40).

It’s not surprising that productivity, design, quality, and effort were the most frequently cited software

metrics in the 14 studies, given that academic and industry use of these metrics, especially productivity

and design, dates back nearly three decades. Size came in sixth place with only an 8% rate of occurrence,

probably because function point proponents stigmatize the use of size metrics as incompetence, despite

their continuing strategic importance.

Using Cost Benefit Analysis to Develop SPI Strategies64

The software metrics were reclassified using the following criteria, productivity—units per time, design—

complexity, quality—defect density, effort—hours, cycle time—duration, size—lines of code or function

points, cost—dollars, change—configuration management, customer—customer satisfaction,

performance—computer utilization, ROI—return-on-investment, and reuse—percent of reused source

code. The strength of this reclassification strategy is that the 487 individual software metrics fell

succinctly into one of the 12 software metric classes without exception. The weakness of the

reclassification is that it hides exactly what is being measured, such as productivity of a software life

cycle versus software process.

Table 40: Reclassification of 487 Metrics for Software Process Improvement (SPI)

Author Productivity Design Quality Effort Cycle Time Size Cost Change Customer Performance ROI Reuse

Davidson 18 4 1 5 5 6

Garrison 28 1 7

Kan 5 9 14 2 4 1

Grady 2 3 4 3 2 1

Daskalantonakis 4 11 1 1 1

Barnard 2 1

Florac 15 7 14 9 4 9 7 12 3

Herbsleb 2 1 1 2 1

McGibbon 7 1 6 7 2 1

Hays 7 3 1 13 11

Jones 14 2 6 3 1 2

Burr 10 6 6 2 5 2 1

Rosenberg 1 2 1 1 3 1

Rico 12 63 9 13 11

65A DACS State-Of-The-Art Report

While some metrics are cited as high as 22% of the time in the case of productivity, versus only 1% for

ROI, there is no prioritization and importance placed on the software metrics by the software metrics

classes. As mentioned before, quality is a strategic and powerful metric, though only cited 15% of the

time, and size is a principle input to most cost models, though only cited 8% of the time. The importance

of using customer satisfaction measurement cannot be understated though it is only cited 2% of the time.

And, reuse will begin to emerge as one of the most strategic metrics of the next millennium, though it is

only cited 0% of the time on average (see Figure 11).

Figure 11. Citation Frequency of Metrics for Software Process Improvement (SPI)

Using Cost Benefit Analysis to Develop SPI Strategies66

Table 41: Operating Parameters and Metrics for Business Transformation

Class Metric

Productivity Units Per Person

Peak Output Level

Cost Per Unit

Cost Per Activity

Revenue Per Employee

Head count

Quality Defect Rates

Yields

Standards and Tolerances

Variance

Life Cycle Costs

Velocity Inventory and Sales

Throughput

Cycle Times

Time To Market

Response Ratios

Customer Service Retention

Revenue Per Customer

Repeat Purchase

Brand Loyalty

Customer Acquisition Cost

Referral Rate

Business Precision Cost of Variety

Number of New Products

Number of Product, Service, and Delivery Configurations

Customer Self-Design and Self-Pricing Flexibility

Enhancement Number of Features, Functions, and Services

Information Flow to Customer

Product and Service Revenue Ratio

Customer Performance (Industrial)

Secondary Revenue Streams

Extension Customer Diversity

Number of New Customers

Channel Diversity

New Revenue Sources

Broader Product and Market Scope

Business Redefinition Market Value

New Lines of Business

Percent of Revenue from New Units and Services

Davidson (1993) identified eight major metric classes and 39 individual metrics of what he calls

“operating performance parameters and metrics,” for business transformation, an advanced form of

process improvement, reengineering, and enterprise automation (see Table 41).

67A DACS State-Of-The-Art Report

Garrison and Noreen (1997a) identify four major metrics classes and 36 individual metrics for what they

call “typical quality costs,” for cost measurement, cost control, and cost minimization (see Table 42).

Table 42: Typical Costs for Measuring Quality of Conformance

Class Metric

Prevention Costs Systems development

Quality engineering

Quality training

Quality circles

Statistical process control activities

Supervision of prevention activities

Quality data gathering, analysis, and reporting

Quality improvement projects

Technical support provided to suppliers

Audits of the effectiveness of the quality system

Appraisal Costs Test and inspection of incoming materials

Test and inspection of in-process goods

Final product testing and inspection

Supplies used in testing and inspection

Supervision of testing and inspection activities

Depreciation of test equipment

Maintenance of test equipment

Plant utilities in the inspection area

Field testing and appraisal at customer site

Internal Failure Costs Net cost of scrap

Net cost of spoilage

Rework labor and overhead

Reinspection of reworked products

Retesting of reworked products

Downtime caused by quality problems

Disposal of defective products

Analysis of the cause of defects in production

Reentering data because of keying errors

Debugging of software errors

External Failure Costs Cost of field servicing and handling complaints

Warranty repairs and replacements

Repairs and replacements beyond the warranty period

Product recalls

Liability arising from defective products

Returns and allowances arising from quality problems

Lost sales arising from a reputation for poor quality

Using Cost Benefit Analysis to Develop SPI Strategies68

Kan (1995) identified five major metrics classes and 35 individual metrics for what he called “metrics and

models,” for software quality engineering, an established, yet advanced form of measurement-based

management for software development (see Table 43).

Table 43: IBM Rochester Software Process Improvement (SPI) Metrics

Class Subclass Metrics and Models

Software Quality Product Quality Defect Density

Customer Problems

Customer Satisfaction

Function Points

In-Process Quality Defect Density During Machine Testing

Defect Arrival Pattern During Machine Testing

Detect Removal Effectiveness

Phase-Based Defect Removal Model Pattern

Special Case Two-Phase Model

Maintenance Fix Backlog and Backlog Management Index

Fix Response Time

Percent Delinquent Fixes

Fix Quality

Reliability Exponential Cumulative Distribution Function (CDF)

Probability Density Function (PDF)

Rayleigh

Reliability Growth Jelinsh-Moranda

Littlewood

Goel-Okumoto

Musa-Okumoto Logarithmic Poisson Execution

Delayed S and Inflection S

Quality Management Life Cycle Rayleigh Life Cycle Reliability

Testing Phase Problem Tracking Report

Reliability Growth

Structural Design Complexity Source Lines of Code (SLOC)

Halstead’s Software Science

Cyclomatic Complexity

Syntactic Constructs

Structure Invocation Complexity

System Partitioning

Information Flow

Fan-In and Fan-Out

Customer Satisfaction Survey In-Person, Phone, and Mail

Sampling Random, Systematic, and Stratified

Analysis CUPRIMDA

69A DACS State-Of-The-Art Report

Grady (1997) identified three major metrics classes and 15 individual metrics for what he called “baseline

measurements for all software process improvement programs,” as part of his plan, do, check, and act

(PDCA)-based methodology—specifically the check phase—evaluate results, ensure success, and

celebrate (see Table 44).

Table 44: Hewlett Packard Software Process Improvement (SPI) Metrics

Class Metric

Process and Product Descriptions Development Type

Computer Programming Language

Type of Product

High-Level Process Measurements Product Size

Effort

Productivity before Changes

Productivity after Changes

Activity Breakdown before Changes

Activity Breakdown after Changes

Defects before Changes

Defects after Changes

Project Calendar Time before Changes

Project Calendar Time after Changes

Defect Failure Analysis Defect Failure Analysis before Changes

Defect Failure Analysis after Changes

Grady and Caswell (1986) report that Hewlett Packard uses 12 other strategic software metrics. Hewlett

Packard’s first six software metrics include, average fixed defects per working day, average engineering

hours per fixed defect, average reported defects per working day, bang, branches covered per total

branches, and defects per thousands of non-commented source statements. Hewlett Packard’s last six

software metrics include, defects per line of documentation, defects per testing time, design weight, non-

commented source statements per engineering month, percent overtime per 40 hours per week, and

(phase) engineering months per total engineering months.

Using Cost Benefit Analysis to Develop SPI Strategies70

Table 45: Motorola Software Process Improvement (SPI) Metrics

Class Metric

Project Planning Schedule Estimation Accuracy

Effort Estimation Accuracy

Defect Containment Total Defect Containment Effectiveness

Phase Containment Effectiveness

Software Reliability Failure Rate

Software Defect Density In-Process Faults

In-Process Defects

Total Release Defects

Total Release Defects Delta

Customer-Found Defects

Customer-Found Defects Delta

Customer Service New Open Problems

Total Open Problems

Mean Age of Open Problems

Mean Age of Closed Problems

Non-Conformance Cost Cost of Fixing Problems

Software Productivity Software Productivity

Software Productivity Delta

Daskalantonakis (1992) identified seven major metrics classes and 18 individual metrics for what he

called a “practical and multidimensional view of software measurement,” in support of Motorola’s

company-wide metrics program (see Table 45).

Diaz and Sligo (1997) report that Motorola uses three strategic metrics for measuring the effects of

software process improvement (SPI), quality, cycle time, and productivity. Quality is defined as defects

per million earned assembly-equivalent lines of code (a form of defect density measurement). Cycle time

is defined as the amount of calendar time for the baseline project to develop a product divided by the

cycle time for the new project. And, productivity is defined as the amount of work produced divided by

the time to produce that work.

71A DACS State-Of-The-Art Report

Table 46: AT&T Software Inspection Process (SIP) Metrics

Class Metric

Cost Average Effort per Thousand Lines of Code

Percentage of Re-Inspections

Cycle Time Average Effort per Thousand Lines of Code

Total Thousand Lines of Code Inspected

Quality Average Faults Detected per Thousand Lines of Code

Average Inspection Rate

Average Preparation Rate

Conformity Average Inspection Rate

Average Preparation Rate

Average Lines of Code Inspected

Percentage of Re-Inspections

Efficiency Total Thousand Lines of Code Inspected

Effectiveness Defect Removal Efficiency

Average Faults Detected per Thousand Lines of Code

Average Inspection Rate

Average Preparation Rate

Average Lines of Code Inspected

Productivity Average Effort per Fault Detected

Average Inspection Rate

Average Preparation Rate

Average Lines of Code Inspected

Barnard and Price (1994) identified seven major metrics classes and 21 individual metrics for what they

called “managing code inspection information,” in support of AT&T’s efforts to ensure a more

consistently effective Software Inspection Process (see Table 46).

The Software Inspection Process metric classes answer these questions: How much do inspections cost?

How much calendar time do inspections take? What is the quality of the inspected software? To what

degree did the staff conform to the procedures? What is the status of inspections? How effective are

inspections? What is the productivity of inspections?

Using Cost Benefit Analysis to Develop SPI Strategies72

 Table 47: SKI Software Process Improvement (SPI) Metrics

Things Received or Used Activities & their Elements Things Consumed Things Produced

Changes Flow Paths Effort Status of Work Units

Type Processing Time # Development Hours # Designed

Date Throughput Rates # of Rework Hours # Coded

Size Diversions #of Support Hours #Tested

Received Delays # of Preparation Hours Size of Work Units

Requirements Changes Backlogs # of Meeting Hours # of Requirements

Requirements Stability Length, Size Time # of Function Points

Identified Queues Start Time or Date # of Lines of Code

% Traced to Design Buffers Ending Time or Date # of Modules

% Traced to Code Stacks Duration of Process # of Objects

Problem Reports Wait Time # of Bytes in Database

Type Money Output Quantity

Date Cost to Date # of Action Items

Size Cost Variance # of Approvals

Origin Cost of Rework # of Defects Found

Severity Test Results

Received # of Passed Test Cases

Funds % Test Coverage

Money Program Architecture

Budget Fan-In

Status Fan-Out

People Changes

Years of Experience Type

Type of Education Date

% Trained in XYZ Size

Employment Codes Effort Expended

Facilities & Environment Problems & Defects

Space per Employee # of Reports

Noise Level Defect Density

Lighting Type

of Staff in Cubicles Origin

of Staff Sharing Offices Distribution by Type

Investment Tools Distributed by Origin

Computer Usage Hours # Open

% Capacity Utilization # Closed

Resource Utilization

% Memory Utilized

% CPU Capacity Used

% I/O Capacity Used

Florac and Carleton (1999) identified four major metrics classes, 19 metrics subclasses, and 80 individual

metrics for what they call “measurable attributes of software process entities,” in support of statistical

process control (SPC) for software process improvement (see Table 47).

73A DACS State-Of-The-Art Report

Table 48: SKI CMM-Based Software Process Improvement (SPI) Metrics

Class Metric

Cost Thousands of Dollars per Year Spent on SPI

Dollars per Software Engineer per Year Spent on SPI

Productivity Gain per Year in Productivity

Gain per Year in Early Detection of Defects

Calendar Time Reduction per Year in Calendar Time to Develop Software Systems

Quality Reduction per Year in Post-Release Defect Reports

Business Value Business Value Ratio of SPI Efforts

Herbsleb, Carleton, Rozum, Siegel, and Zubrow (1994) identified five major metrics classes and seven

individual metrics for measuring the benefits of SEI Capability Maturity Model for Software (SW-CMM)-

based software process improvement (see Table 48).

Herbsleb et al. also recommend that organizations use four more additional classes of metrics to measure

Software Process Improvement (SPI), balanced score card, CMM/SEI core measures, business value, and

quality metric classes. Balanced score card consists of financial, customer satisfaction, internal processes,

and innovation and improvement activity metrics. CMM/SEI core measures consist of resources expended

on software process improvements, resources expended to execute the software processes, amount of time

(calendar time) it takes to execute the process, size of the products that result from the software process,

and quality of the products produced metrics. Business value consists of increased productivity, early

error detection and correction, overall reduction of errors, improved trends in maintenance and warranty

work, and eliminating processes or process steps metrics. Quality consists of mean time between failures,

mean time to repair, availability, and customer satisfaction metrics.

Using Cost Benefit Analysis to Develop SPI Strategies74

Table 49: DACS Software Process Improvement (SPI) Metrics

Class Metric

Without, 30% Reuse, 60% Reuse, & 90% Reuse Estimated Source Lines of Code

% Reuse

Equivalent Ratio on Reuse

Equivalent Code

COCOMO Effort Estimate

Equivalent Cost

Estimated Rework (New Code)

Estimated Rework (Reused Code)

Estimated Rework (Total Rework)

Estimated Maintenance Costs

Development Effort + Maintenance

Savings of Reuse Over No Reuse

% Reduction

Clean Room, Inspections, & Walk throughs Estimated Source Lines of Code

Equivalent Ratio

Equivalent Code

Effort Estimate

Equivalent Cost

Traditional, Inspections, Reuse, Clean Room, & Full Development Costs

Rework Costs

Maintenance Costs

Development + Maintenance Savings

Software Process Improvement (SPI) Costs

Return-on-Investment (ROI)

McGibbon (1996) identified three major metrics classes and 24 individual metrics for what he called “a

business case for software process improvement” comparing Software Reuse, the Software Inspection

Process, and the Clean Room Methodology (see Table 49).

McGibbon identified another six major metric classes and 23 individual metrics for performing a detailed

analysis and comparison of the Software Inspection Process and what he called “Informal Inspections,”

otherwise known as Walk throughs.

75A DACS State-Of-The-Art Report

Table 50: Personal Software Process (PSP) Metrics

Metric Definition

Interruption Time Elapsed time for small interruptions from project work such as a phone call

Delta Time Elapsed time in minutes from start to stop less interruptions

Planned Time in Phase Estimated time to be spent in a phase for a project

Actual Time in Phase Sum of delta times for a phase of a project

Total Time Sum of planned or actual time for all phases of a project

Time in Phase to Date Sum of time in actual time in phase for all completed projects

Total Time to Date Sum of time in phase to date for all phases of all projects

Time in Phase to Date % 100 * time in phase to date for a phase divided by total time in phase to date

Compile Time Time from the start of the first compile until the first clean compile

Test Time Time from the start of the initial test until test completion

Defect Any element of a program design or implementation that must be changed

Defect Type Project defect type standard

Fix Time Time to find and fix a defect

Lines of Code Logical line of code as defined in the engineer’s counting & coding standard

Base Lines of Code Lines of code from a previous version

Deleted Lines of Code Deletions from the base lines of code

Modified Lines of Code Modifications to the base lines of code

Added Lines of Code New objects, functions, procedures, or any other added lines of code

Reused Lines of Code Lines of code from a previous program that is used without modification

New Lines of Code Sum of added lines of code

Changed Lines of Code Sum of modified lines of code

Total Lines of Code Total program lines of code

Total New Reused New or added lines of code that were written to be reusable

Lines of Code Type Base, deleted, modified, added, reused, new, changed, total, total new reused

Lines of Code/Hour Total new & changed lines of code developed divided by development hours

Estimating Accuracy Degree to which the estimate matches the result

Test Defects/KLOC Defects removed in the test phase per new and changed KLOC

Compile Defects/KLOC Defects removed in compile per new and changed KLOC

Total Defects/KLOC Total defects removed per new and change KLOC

Yield Percent defects injected before the first compile removed before first compile

Appraisal Time Time spent in design and code reviews

Failure Time Time spent in compile and test

Cost of Quality Appraisal time plus failure time

Appraisal/Failure Ratio Appraisal time divided by failure time

Review Rate Lines of code reviewed per hour

Hays and Over (1997) identified 34 individual strategic software metrics in support of the Personal

Software Process (PSP) pioneered by Watts S. Humphrey (see Table 50).

Various forms of defect density metrics and appraisal to failure ratio are the key metrics to focus on.

Appraisal to failure ratio must reach a modest 67% in order achieve zero defects.

Using Cost Benefit Analysis to Develop SPI Strategies76

Jones (1997a) identified five major metrics classes and 24 individual metrics for what he called

“the six stages of software excellence” for quantifying the impact of software process improvements

(see Table 51).

Table 51: SPR Software Process Improvement (SPI) Metrics

Class Metric

Process Improvement Process Improvement Expenses per Capita

Process Improvement Stages in Calendar Months

Improvements in Delivered Defects

Improvement in Development Productivity

Improvements in Development Schedule

Organization Size in Number of People

Capability Maturity Model for Software Level

Application/System Application Class

Programming Language

Size in Function Points

Size in Lines of Code

Productivity Work Hours per Month (Function Points)

Average Monthly Salary

Function Points per Month

Lines of Code per Month

Cost per Function Point

Cost per Line of Code

Cost Work Hours per Function Point per Activity

Staff (Number of People) per Activity

Effort (Months) per Activity

Schedule (Months) per Activity

Costs per Activity

Percent of Costs per Activity

Quality Potential Defects (Estimated)

Defect Removal Efficiency

Delivered Detects

Defects per Function Point

Defects per Thousand Lines of Code

77A DACS State-Of-The-Art Report

Burr and Owen (1996) identified seven major metrics classes and 32 individual metrics for what they

called “commonly available metrics” with which to perform Statistical Process Control (SPC) for

Software Process Improvement (SPI) (see Table 52).

Table 52: Software Process Improvement (SPI) Metrics for SPC

Class Subclass Subclass

Product Size Lines of Code per Module

Modules per Function

Functions per System

Data Types per Area

Variables

Complexity McCabe’s

Path Count

Call Count

Data Types

Conformity Completeness

Functional Differences

Supplier Confidence

Customer Confidence

Defectiveness Defect Count

Function Failures

Data Faults

Machine or System Failures

Reliability

Process Time Lines of Code per Day

Lines of Code per Hour

Modules per Month

Review Time

Stage Time

Preventative per Total Time

Corrective per Total Time

Cost Systems Utilization

Cost per Line of Code

Cost per Line of Module

Cost of Correction

Cost of Failure

Defectiveness Error Count

Error Rate per Module

Using Cost Benefit Analysis to Develop SPI Strategies78

Rosenberg, Sheppard, and Butler (1994) identified three broad metrics classes, three metrics subclasses,

and nine individual metrics for what they called “Software Process Assessment (SPA) metrics” in support

of Software Process Improvement (SPI) (see Table 53).

Rico (1998) identified five forms of defect density metrics for what he called “Quality Metrics” in direct

support of Software Process Improvement (SPI) measurement (see Table 54).

Table 53: NASA GSFC Software Process Improvement (SPI) Metrics

Class Subclass Metric

Process Personnel Resources Form Effort by Phase

Product Software Analysis Complexity

Readability

Size

Changes to Code Component Origination (% Complete)

Component Origination (Amount Reused)

Change Report (Type)

Change Report (Date)

Change Report (Effort)

Table 54: Defect Density Metrics for Software Process Improvement (SPI)

Source Metric Name Metric Algorithm

IEEE Defect Density Defects

KSLOC

IBM (Michael Fagan) Defect Removal Effectiveness Inspection Defects

Inserted Defects

 IBM (NASA Space Shuttle) Early Detection Percentage Major Inspection Defects

Inserted Defects

Dunn Effectiveness Defects

Current Phase + Post Phase

Motorola Total Defect Containment Effectiveness Pre-Release Defects

Pre-Release + Post-Release Detects

Motorola Phase Containment Effectiveness Phase Errors

Phase Errors + Phase Defects

x 100 %

x 100 %

x 100 %

79A DACS State-Of-The-Art Report

Rico (1998) identified three metric classes and 63 individual metrics for what he called “software product

metrics” in support of Software Process Improvement (SPI), relational design metrics, object oriented

design metrics, and universal/structural design metrics (see Table 55).

Table 55: Universal/Structural Design Metrics for Software Process Improvement (SPI)

Relational Design Metrics Object Oriented Design Metrics Universal/Structural Design Metrics

Attribute Consistency System Size in Classes Cyclomatic Complexity

Use of Domains Number of Hierarchies Fan In

Unnecessary Keys Number of Independent Classes Fan Out

Foreign Key Indexes Number of Single Inheritance Dependencies

Keys on Similar Attributes Number of Multiple Inheritance Design Changes

Relationships (Multiple Paths) Number of Internal Classes Historical Defectiveness

Relationships (Infinite Loops) Number of Abstract Classes Current Defectiveness

Relationships (Implied) Number of Leaf Classes Software Science

Unnecessary Denormalization Average Depth of Inheritance Static Graph Theoretic Complexity

Index Consistency Average Width of Inheritance Generalized Graph Theoretic Complexity

Missing Indexes (Defined Relationships) Average Number of Ancestors Dynamic Graph Theoretic Complexity

Missing Indexes (Implied Relationships) Measure of Functional Abstraction Unit Test Case Determination

Excessive Indexes Measure of Attribute Abstraction Design Structure

Unnecessary Indexes Data Access Metric Data Flow Complexity

No Unique Identifier Operation Access Metric

Unique Constraint Number of Methods

Use of Surrogate Keys Class Interface Size

Redundant Attributes Number of Inline Methods

Repeating Groups Number of Polymorphic Methods

Homonym Attributes Number of Attributes

Missing Tables Number of Abstract Data Types

Inconsistent Attribute Definition Class Size in Bytes

Inconsistent Constraint Definition Direct Class Coupling

Incorrect Relationship Definition Direct Attribute Based Coupling

Disabled Constraints

Using Cost Benefit Analysis to Develop SPI Strategies80

Rico (1996) identified six metric classes and 39 individual metrics for what he called “Software

Inspection Process metrics” in support of Software Process Improvement (SPI), publishing a

comprehensive set of software inspection process cost models (see Table 56).

Table 56: Software Inspection Process Metrics for Software Process Improvement (SPI)

Metric Class Metric Model

Planning Rico SLOC / (Rate * 2) * (Team Size * 4 + 1)

Hewlett Packard SLOC / (Rate * 2) * 25

AT&T 50 * KSLOC

Bell Northern Research 3 * KSLOC * 4 * 8

Tom Gilb SLOC / (Rate * 2) * (5.76 * Team Size)

Overall Total Defects

Detects per Hour

Major Defects

Major Defects per Hour

Minor Defects

Minor Defects per Hour

Defect Removal Efficiency

Total Hours

Duration

People

Review Rate Overview Rate

Preparation Rate

Inspection Rate

Rework Rate

Substage Duration Planning Hours

Overview Hours

Preparation Hours

Inspection Hours

Rework Hours

Follow up Hours

Substage Interval Planning/Overview Interval

Overview/Preparation Interval

Preparation/Inspection Interval

Inspection/Rework Interval

Rework/Follow up Interval

Planning/Preparation Interval

Planning/Inspection Interval

Planning/Rework Interval

Planning/Follow-up Interval

Inspection/Follow up Interval

Substage Efficiency Preparation Efficiency

Inspection Efficiency

Inspection Gain Rate

Inspection Suppression

81A DACS State-Of-The-Art Report

Costs and Benefits

Table 1, Figure 2, and Table 39 demonstrate that a uniform, industry standard definition of Software

Process Improvement (SPI) doesn’t yet exist as of this writing. This section identifies the costs and

benefits of SPI as reported by 24 of the most quantitative, authoritative, and complete descriptions of SPI

efforts and their results known. Nevertheless, the survey and identification of SPI costs and benefits

revealed a lack of uniform, industry standard metrics for measuring and reporting the costs and benefits of

SPI.

Of the 24 quantitative studies, 78% reported quality, 28% reported cycle time reduction, 28% reported

productivity increase, 17% reported cost reduction, 11% report cost estimation accuracy, 6% reported size

estimation accuracy, 6% reported employee satisfaction, and 6% reported product availability

improvements. Of the studies reporting measurements on traversing SEI CMM Levels, 11% reported

Level 1 to 2, 11% reported Level 2 to 3, 6% reported Level 3 to 4, 6% reported Level 4 to 5, and 33%

reported Level 1 to 5 time measurements. Of those reporting major accomplishments, 6% reported to be

ISO 9000, 6% reported to have won the U.S. Malcolm Baldrige National Quality Award, and 28%

reported to have achieved CMM Level 5.

 Table 57: Survey of Software Process Improvement (SPI) Costs and Benefits

Source of SPI Costs and benefits

Improvement Arthur Oldham Wigle Grady Ferguson Hays Jones Diaz Haley Kan Herbsleb Kajihara Mays

Quality 50% 10X 98% 10X 67X 137:1 95% 86% 77% 67% 39% 100X

Cost 50% 99%

Cycle Time 50% 83% 75% 8X 19%

Productivity 365% 3X 190% 35% 100%

Total DREa 100% 99.8% 99.9%

Precision 99 9%

Costing 100:1 93%

Sizing 250:1

ROI Ratio 19:1 8:1 1.35:1 5:1 482:1

ROI Dollars $100M $450M

Cost/Person $15K $15K $21K $483

Years 8 6 15 10 .05 .05 3.5 6.5 7 4 3.5 9 2

People 400 350 1,200 1,375 15,032 414

SKI Level 5 ✔ ✔ ✔

ISO 9000 ✔

Baldrige ✔

Represents defect removal efficiency of product appraisal activities such as inspection and test (not an improvement percentage).

Using Cost Benefit Analysis to Develop SPI Strategies82

In addition, 28% reported return-on-investment (ROI) data, 28% reported the amount of money spent per

person on SPI, 28% reported the number of software managers and developers, 11% reported the amount

of money saved by SPI, and 6% reported shareholder value increase. And, finally, 33% reported defect

removal efficiency measurements, 11% reported rework cost reductions, 11% reported defect insertion

rate reductions, 6% reported quality estimation accuracy, and 6% reported product failure reductions.

Of the 26 individual measurement data points reported by the 24 studies, 50% of them were directly

related to software quality. Only 6% of the reported metrics and 11% of the reported measurements were

related to cost reduction. This doesn’t necessarily show a positive correlation between cost and quality.

ROI measurements actually show a negative correlation; that is, the higher the quality, the lower the cost.

Table 57 summarizes some of the most important metrics and measurement values for the cost and

benefits of SPI found in the 24 principle references.

Arthur (1997) reports that U.S. West Technologies experienced 50% or greater reductions in cycle time,

defects, and cost. Arthur reports that in six months of SPI efforts to examine computer system reliability

issues, U.S. West reduced system outage by 79% and increased system availability to 99.85%. U.S. West

also examined other areas of their business such as service order errors, long distance errors, billing cycle

time, billing errors, billing strategy, postage costs, and new product development time. Manual operations

were automated reducing costs by 88%. Postage costs were reduced from $60 million to $30 million,

resulting in savings of 50%. Cash flow was improved by 50%, and service order errors were decreased by

over 50%.

Figure 12. SEI CMM Maturity Profile (domestic)

83A DACS State-Of-The-Art Report

The CMM is the Software Engineering Institute’s Capability Maturity Model for Software pioneered in its

current form by Humphrey (1989). The CMM is a framework for evaluating software management and

development sophistication, one being the worst and five being the best. The Software Engineering

Institute (1999) reports that one-half of one percent of software development organizations worldwide are

at CMM Level 5, and 80% are at or below CMM Level 2, as in Figure 12. Achieving CMM Level 5 is the

rough equivalent of winning the Malcolm Baldrige National Quality Award, a rare and prestigious state of

organizational quality.

Cosgriff (1999a) reports that the Ogden Air Logistic Center Software Engineering Division of Hill Air

Force Base (AFB) in Utah went from CMM 1 to CMM Level 5 in six years. Cosgriff reports that Hill’s

Software Engineering Division took two and a half years to progress from CMM Level 1 to 2, six months

to go from Level 2 to 3, and about 2 years to go from Level 3 to 4. Finally Cosgriff reports Hill took about

a year to go from Level 4 to 5.

Oldham, Putman, Peterson, Rudd, and Tjoland (1999) report that Hill AFB’s SPI efforts yielded an order

of magnitude improvement in software quality (10X), an 83% reduction in software development and

maintenance cycle times, and a 19:1 return-on-investment ratio for Hill’s SPI efforts, equating to $100

million.

Fowler (1997) reports an 86% improvement in software quality for Boeing Defense and Space Group of

Seattle, Washington, also an elite member of the CMM Level 5 club. Yamamura and Wigle (1997) also of

Boeing’s CMM Level 5 outfit, show a 98% improvement in software quality, an improvement in defect

removal efficiency of nearly 100%, and report earning 100% of possible incentive fees from their clients.

Yamamura and Wigle also report that employee satisfaction has increased from 26% to 96%. Finally,

Yamamura and Wigle report that Boeing yields a 7.75:1 return-on-investment for using highly effective

product appraisal activities.

Grady (1997) reports that Hewlett-Packard (HP) has determined the return-on-investment costs for 11

different SPI strategies. Grady reports return-on-investments of 9% for product definition, 12% for

detailed design method, 12% for rapid prototyping, 12% for system design, and 20% for inspection

software process improvements. Grady also reports returns of 35% for reuse, 5% for complexity analysis,

10% for configuration management, 6% for process certification, 6% for software asset management, and

7% for program understanding software process improvements. Grady goes on to report that HP achieved

a 58X improvement in product failures, a 10X improvement in product defects, and savings of over $450

million from the use of inspections between 1987 and 1999, nearly $77 million in 1999 alone, as shown in

Figure 13.

Ferguson, Humphrey, Khajenoori, Macke, and Matvya (1997) report a 67X increase in software quality for

Advanced Information Services’ SPI efforts. Ferguson et al. report an appraisal to failure ratio of 3.22:1, a

review efficiency of 76.2%, a 99.3% test efficiency, a 99.8% total defect removal efficiency, and only one

fielded defect in 18 software product releases for Motorola’s SPI efforts, as described in Table 58.

Hays and Over (1997) report a 250:1 improvement in software size estimation and a 100:1 improvement

in effort estimation accuracy as shown in Figure 14. Hays and Over reported a 7:1 improvement in SPI

efforts using specific software quality methodologies for achieving SPI. Hays and Over also report a

120:1 improvement in software quality during software compilation and a 150:1 improvement in software

quality during testing. Hays and Over also report a 75% defect removal efficiency before software

compilation in the best case and an average programming productivity of 25 sources lines of code per

hour, while still achieving near zero defect delivery.

Using Cost Benefit Analysis to Develop SPI Strategies84

Figure 13. Hewlett Packard Annual Software Inspection Process Savings

Jones (1997a) reports to have measurements, costs, and benefits for SPI involving 7,000 software

projects, 600 software development organizations, and six industries. Jones reports that 200 of the 600

organizations in his database are actively pursuing SPI efforts. Jones reports that it takes an average of

$21,281 per person to conduct assessments, improve management and technical processes, institute

software tools and reuse, and ultimately achieve industry leadership. Jones reports that it takes 34 months

in the best case and 52 months in the worst case to achieve industry leadership using a concerted SPI

effort, resulting in a 95% reduction in defects, 365% increase in productivity, and 75% reduction in cycle

time.

Figure 14. SEI Personal Software Process (PSP) Results

85A DACS State-Of-The-Art Report

Table 58: Motorola Personal Software Process (PSP) Benefits

Defect Containment Analysis

Project Size Defects Insertion Review Efficiency Test Efficiency Fielded

1 463 13 3% 8 62% 5 100% 0

2 4,565 69 2% 59 86% 10 100% 0

3 1,571 47 3% 39 83% 8 100% 0

4 3,381 69 2% 47 68% 22 100% 0

5 5 0 0% 0 0% 0 0% 0

6 22 2 9% 2 100% 0 0% 0

7 1 1 100% 1 100% 0 0% 0

8 2.081 .34 2% 33 ‘),’, () (l’, 1

9 114 15 13% 13 87% 2 100% 0

10 364 29 8% 27 93% 2 100% 0

11 7 0 0% 0 0% 0 0% 0

12 620 12 2% 10 83% 2 100% 0

13 720 9 1 % 7 78% 2 100% 0

14 3,894 20 1% 18 90% 2 100% 0

15 2,075 79 4% 52 66% 27 100% 0

16 1,270 20 2% 19 95% 1 100% 0

17 467 17 4% 14 82% 3 100% 0

18 3,494 139 4% 89 64% 50 100% 0

Total 25,114 575 2% 438 76% 136 99% 1

Diaz and Sligo (1997) report SPI data from Motorola’s Government Electronics Division (GED) in

Scottsdale, Arizona, involving a 1,500 engineer enterprise, 350 of whom are involved in software

management and development, and 34 major programs or products. Diaz and Sligo report that the GED is

currently at SEI CMM Level 5. Diaz and Sligo report that three GED programs are at CMM Level 1, nine

at Level 2, five at Level 3, eight at Level 4, and nine GED programs are at SEI CMM Level 5. Diaz and

Sligo report a 54% defect removal efficiency increase from CMM Level 2 to 3, a 77% defect removal

efficiency increase from Level 2 to 4, and an 86% defect removal efficiency increase from Level 2 to 5.

Diaz and Sligo report a cycle time improvement of nearly 8X and a productivity improvement of nearly

3X from CMM Level 1 to 5. Diaz and Sligo report that it took Motorola GED approximately 6 to 7 years

to journey from SEI CMM Level 1 to Level 5 (see Figure 15).

Using Cost Benefit Analysis to Develop SPI Strategies86

Haley (1996) reports SPI data from Raytheon Electronic Systems’ Equipment Division in Marlborough,

Massachusetts, involving 1,200 software engineers and a diverse variety of programs. Haley reports some

of the programs as air traffic control, vessel traffic management, transportation, digital communications,

ground-based and shipboard radar, satellite communications, undersea warfare, command and control,

combat training, and missiles. Haley reports as a result of Raytheon’s extensive SPI efforts, rework was

reduced by over 50%, defects found in testing dropped by 80%, productivity increased by 190%, software

cost estimation accuracy increased by 93%, and software quality increased by 77%. Haley reports that

these SPI results were in conjunction with transitioning from SEI CMM Level 1 to Level 3, over a seven

year period from 1988 to 1995, as shown in Figure 16.

McGibbon (1996), Director of the Data and Analysis Center for Software (DACS) at Rome Laboratory in

Rome, New York conducted a quantitative analysis of SPI costs, benefits, and methods. McGibbon found

an 82% decrease in software development costs, a 93% decrease in software rework costs, a 95% decrease

in software maintenance costs, and a 99% reduction in software defects using SPI versus traditional

software management and development methods (see Figure 17).

Kan (1995) reported that the IBM Federal Systems Division, in Gaithersburg, Maryland, developed a

quality estimation technique used on nine software projects consisting of 4,000,000 source lines of code,

that predicted the accuracy of final software quality within 6 one-hundredths of a percent of accuracy (see

Figure 18).

Figure 15. Motorola CMM-Based Software Process Improvement (SPI)

87A DACS State-Of-The-Art Report

Figure 16. Raytheon CMM-Based Software Productivity Improvements

Figure 17. DACS Software Process Improvement (SPI) Model

Note that defect and maintenance cost reductions are off the scale and are approximately 18 times

better than the assessment level (not 10 times as shown).

Using Cost Benefit Analysis to Develop SPI Strategies88

Kan (1991) reported software quality estimation accuracy of more than 97%, overall problem reporting

estimation accuracy of over 95%, defect insertion rate and defect population reductions of over 50%, and

asymptotic defect populations by system test and delivery for IBM’s SPI efforts, in Rochester, Minnesota.

Kan, Dull, Amundson, Lindner, and Hedger (1994) reported 33% better customer satisfaction than the

competition, software quality improvements of 67%, defect insertion reductions of 38%, testing defect

reductions of 86%, implementation of 2,000 defect prevention actions, and an asymptotic defect

population by testing, for their SPI efforts (see Figure 19). Kan et al. reports that IBM in Rochester,

Minnesota, won the Malcolm Baldrige National Quality Award in 1990, and obtained ISO 9000

registration for the IBM Rochester site in 1992.

Sulack, Linder, and Dietz (1989) reported that IBM Rochester’s SPI efforts supported the development of

eight software products, five compilers, five system utilities, 11,000,000 lines of online help information,

32,000 pages of manuals, a 500,000 line automated help utility, and 1,100 lines of questions and answers.

Sulack, Lindner, and Dietz also reported that IBM’s SPI efforts resulted in the development of native

support for 25 international languages. Sulack, Lindner, and Dietz reported that in total, IBM Rochester’s

SPI efforts supported the development of 5,500,000 new source lines of code and the conversion of more

than 32,000,000,000 source lines of code for a new mid range computer system. Finally, Sulack, Lindner,

and Dietz reported a 38% cycle time reduction for not only introducing SPI efforts at IBM Rochester, but

achieving the aforementioned results as well.

Figure 18. IBM Rayleigh Life-Cycle Reliability Model Accuracy

89A DACS State-Of-The-Art Report

Herbsleb, Carleton, Rozum, Siegel, and Zubrow (1994) of the SEI conducted a cost-benefit analysis of

CMM-based SPI involving 13 software management and development organizations (see Figure 20).

Herbsleb’s et al. study involved Bull HN, GTE Government Systems, Hewlett Packard, Hughes Aircraft

Co., Loral Federal Systems, Lockheed Sanders, Motorola, Northrop, Schlumberger, Siemens Stromberg-

Carlson, Texas Instruments, the United States Air Force Oklahoma City Air Logistics Center, and the

United States Navy Fleet Combat Direction Systems Support Activity. Herbsleb’s et al. study surveyed

organizational characteristics such as organizational environment and business characteristics and SPI

efforts such as SPI effort descriptions, process maturity information, measures and techniques in use, and

description of data collection activities.

Figure 19. IBM Rayleigh Life-Cycle Reliability Model

Herbsleb’s et al. study also surveyed results such as impact of SPI on business objectives, impact of SPI

on social factors, and actual performance versus projections. Herbsleb et al. reported costs and lengths of

SPI efforts for five of thirteen organizations. Herbsleb et al. reported one organization spent $1,203,000

per year for six years, one spent $245,000 in two years, one spent $155,000 in six years, one spent

$49,000 dollars in four years, and one spent $516,000 in two years. Herbsleb et al. reports that yearly

costs per software developer for the same five organizations were, $2,004, $490, $858, $1,619, and

$1,375 respectively. Herbsleb et al. reported that yearly productivity increases for four of the thirteen

organizations were 9% for three years, 67% for one year, 58% for four years, and 12% for five years.

Herbsleb et al. reported defect removal efficiency improvements of 25%, cycle time reductions of 23%,

software quality improvements of 94%, and return-on-investments of nearly 9:1. Herbsleb et al. reported

that the median SPI performance for all thirteen organizations included $245,000 yearly costs, 3.5 years

of SPI, $1,375 per software developer, 35% productivity increase, 22% defect removal efficiency

increase, 19% cycle time reduction, 39% software product quality increase, and a 5:1 return-on-

investment.

Using Cost Benefit Analysis to Develop SPI Strategies90

Figure 20. SEI Software Process Improvement (SPI) Survey (of 13 Organizations)

Kajihara, Amamiya, and Saya (1993) report a 100% increase in productivity from 1989 to 1993 and a

10:1 decrease in the number of software defects from 1984 to 1993, both as a result of NEC’s SPI efforts

in Tokyo, Japan (see Figure 21). Kajihara, Amamiya, and Saya go on to report that the number of defect

analysis reports associated with NEC Tokyo’s SPI efforts increased by 33X, from 50 in 1981 to 1,667 at

their peak in 1990. Kajihara, Amamiya, and Saya report that the number of groups and people involved in

NEC Tokyo’s SPI efforts grew from 328 groups and 2,162 people in 1981 to 2,502 groups and 15,032

people in 1990.

Weller (1993) reported that Bull HN Information System’s Major Systems Division performed over 6,000

Software Inspections as part of their SPI-related efforts between 1990 and 1991 on mainframe computer

operating systems. Weller reported that Bull HN Information Systems managed 11,000,000 source lines of

code, adding up to 600,000 source lines of code every year. Weller reported that the number of software

defects removed were 2,205, 3,703, and 5,649 in 1990, 1991, and 1992, respectively. Weller reported a

76% increase in defect removal efficiency, 33% increase in software quality, and a 98.7% defect removal

efficiency before testing in the best case.

Mays, Jones, Holloway, and Studinski (1990) reported that IBM Communications Systems at Research

Triangle Park, North Carolina, achieved a 50% defect insertion rate reduction for their SPI related efforts,

involving 414 software developers (see Figure 22). Mays et al. reported that the total cost was less than

half a percent of the total organizational resources, in order to achieve the 50% defect insertion rate

reduction. The 50% reduction in defects resulted in four staff years of saved Software Inspection time, 41

staff years of saved testing time without Software Inspections, and 410 staff years of saved post release

defect removal time without Software Inspections and testing. The total return-on-investment for IBM’s

SPI related efforts was over 482:1 in the best case.

A DACS State-Of-The-Art Report 91

Figure 21. NEC (Tokyo, Japan) Defect Prevention Results

Figure 22. Defect Prevention Results

Using Cost Benefit Analysis to Develop SPI Strategies92

Lim (1998) conducted an extensive survey of the costs and benefits of using Software Reuse as a SPI

strategy throughout international industry, as well as comprehensive Software Reuse cost-benefit analyses

at Hewlett Packard’s (HP’s) Manufacturing Productivity Section and San Diego Technical Graphics

Division from 1983 to 1994 (see Table 59). Lim reports 100% quality increases at HP, 50% decreases in

time-to-market at AT&T, $1.5M in savings at Raytheon, a 20X increase in productivity at SofTech, and a

25% increase in productivity at DEC as a result of using Software Reuse. Lim also reports a 57% increase

in productivity at HP, 461% increase in productivity in an HP firmware division, 500% cycle time

reduction in HP, and a 310% return-on-investment (ROI) at HP (in the best case) as a result of using

Software Reuse. Poulin (1997) cites similar benefits for Software Reuse from 10 software companies

world-wide. Poulin reports that NEC achieved a 6.7X productivity increase, GTE saved $14M, Toshiba

reduced defects 30%, DEC reduced cycle times 80%, CAP-Netron achieved 90% reuse levels, Raytheon

increased productivity 50%, and Software Architecture and Engineering reached 90% reuse levels.

Table 59: Hewlett Packard Software Reuse Costs and Benefits

Division

Cost Category Manufacturing Graphics

Timespan 1983- 1992 1987- 1994

Years 10 8

Initial Effort 26 Staff Months 107 Staff Months

Initial Cost $0.3M $1.3M

Sustaining Effort 54 Staff Months 99 Staff Months

Sustaining Cost $0.7M $ 1.3M

Total Effort 80 Staff Months 206 Staff Months

Total Cost $1.0M $2.6M

Effort Saved 328 Staff Months 446 Staff Months

Cost Saved $4.1M $5.6M

Return-on-Investment 310% 115%

Net Present Value Effort 125 Staff Months 75 Staff Months

Net Present Value Dollars $1.6M $0.9M

Break-Even Point Second Year Sixth Year

Kaplan, Clark, and Tang (1995) of IBM Santa Teresa conducted a survey of 40 SPI strategies, briefly

describing them, identifying the process steps where possible, and enumerating the costs and benefits as

well. Kaplan, Clark, and Tang identified the Clean Room Methodology as a strategically important SPI

strategy (see Table 60). Kaplan, Clark, and Tang identified resulting quality levels for 15 software projects

at 2.3, 3.4, 4.5, 3.0, 0, 0, 2.6, 2.1, 0.9, 5.1, 3.5, 4.2, 1.8, 1.8, and 0.8 defects per thousand software source

lines of code, for an average defect density of 2.4.

Slywotzky, Morrison, Moser, Mundt, and Quella (1999) conducted in-depth case studies of nine firms and

examined more that 200 firms and the impact that management strategy, Business Process Reengineering

(BPR), and process improvement had on shareholder value (see Figure 23). While Slywotsky’s et al. work

isn’t about SPI per se, his book does study a form of process improvement called value chain analysis, or

Process Value Analysis (PVA), as mentioned previously, among other BPR or process improvement

techniques. Slywotzky et al. reported that Microsoft achieved a 220:1, Coca Cola achieved a 20:1, Cisco

achieved a 15:1, GE achieved a 12:1, Nike achieved an 11:1, Yahoo achieved a 12:1, Mattel achieved a

3:1, and The Gap achieved a 4:1 shareholder value advantage over their competitors.

A DACS State-Of-The-Art Report 93

Table 60:Clean Room Methodology Benefits

Year Organization Product Software Size Defect Density

1987 IBM Flight control 33,000 2.3

1988 IBM Software tool 85,000 3.4

1989 NASA Satellite control 40,000 4.5

1990 University Software tool 12,000 3.0

1990 Martin Marietta Word processor 1,800 0.0

1991 IBM Operating system 600 0.0

1991 IBM Operating system 10,000 2.6

1991 IBM Compiler 21,900 2.1

1991 IBM Imaging product 3,500 0.9

1992 IBM Printer driver 6,700 5.1

1992 IBM Expert system 17,800 3.5

1992 NASA Satellite control 170,000 4.2

1993 IBM Device driver 39,900 1.8

1993 IBM Database 8,500 1.8

1993 IBM Network software 4,800 0.8

Figure 23. Share Holder Value (as a result of SPI)

Using Cost Benefit Analysis to Develop SPI Strategies94

Comparative Analyses

So far this study, specifically the literature review, has examined the definition of SPI, the quantitative

costs and benefits of SPI, and a broad-based examination of SPI techniques, methods, methodologies,

approaches, and strategies. This section attempts to examine the best SPI strategies based on existing

analytical comparative analyses of the various SPI approaches. The reason previous sections have

examined such a broad base of SPI methods, rather than rushing right into to this section’s analyses, was

to expose the reader to an authoritatively wide variety of SPI techniques that are available for later

individual analysis.

This section examines 18 quantitative and qualitative SPI models, comparative analyses, and decision

analysis models to introduce candidate and foundational approaches for identifying and selecting from

multiple SPI strategies based on individual costs and benefits (see Table 61).

Table 61: Survey of Software Process Improvement (SPI) Comparative Analyses

Author Model Quantitative Costs Benefits Criteria Techniques, Methods, Strategies Best SPI Method

Humphrey SKI SW-CMM No No No n/a 18 Key Process Areas (KPAs) Requirements Analysis

Austin Decision Matrix No No Yes 2 13 Various Cost Estimation

McConnell Decision Matrix No No Yes 5 29 Various Evolutionary Life Cycle

Grady Decision Matrix Yes Yes Yes 4 11 Various Program Understanding

McGibbon Decision Matrix Yes Yes Yes 6 Clean Room, Inspection, Reuse Software Inspections

Rico Defect Removal Yes Yes Yes 14 PSP, Inspection, Test PSP

McGibbon Defect Removal Yes Yes Yes 29 Clean Room, Inspection,

Walkthrough Clean Room

n/a Decision Matrix No No Yes 11 Reviews, Inspection, Walkthrough Software Inspections

Kettinger Decision Analysis No No No 11 72 Various n/a

Tingey Decision Matrix No No No 12 Baldrige, ISO 9001, SKI SW-CMM Baldrige

Harrington Decision Matrix No No Yes 16 6 Various Quality Mgmt Systems TQM

Rico Decision Matrix Yes Yes Yes 12 Vertical Process, Vertical Life Cycle PSP

Jones Decision Matrix No No No 3 49 Various Quality Metrics

Haskell Decision Matrix Yes Yes Yes 6 SKI SW-CMM, ISO 9001 ISO 9001

Wang Decision Matrix Yes No No 444 SPRM, SPICE, CMM, SPRM

BOOTSTRAP, ISO9000

Wang Decision Matrix Yes No No 444 SPICE, CMM, BOOTSTRAP, SPICE

ISO 9000

Wang Decision Matrix Yes No No 5 50 Various Software Architecture

McConnell Decision Matrix No No Yes 11 10 Various Spiral Life Cycle

Humphrey (1987 and 1989) and Paulk, Weber, Curtis, and Chrissis (1995) created the Capability Maturity

Model for Software (CMM) as a prescriptive framework for Software Process Improvement (SPI) - note

that the CMM is prescriptive for Software Process Improvement (SPI), not necessarily software

management, engineering, or process definition. The CMM is designed to identify key or strategic

processes, group and arrange them according to importance and priority, and direct the order of Software

Process Improvement (SPI) priorities, activities, and implementation (see Figure 24).

A DACS State-Of-The-Art Report 95

Figure 24. SEI Capability Model for Software (CMM)

According to the CMM, organizations should first focus on the six Level 2 (Repeatable) Key Process

Areas (KPAs), Requirements Management, Software Project Planning, Software Project Tracking and

Oversight, Software Subcontract Management, Software Quality Assurance, and then Software

Configuration Management. Then software organizations should focus on the seven Level 3 (Defined)

Key Process Areas (KPAs), Organizational Process Focus, Organizational Process Definition, Training

Program, Integrated Software Management, Software Product Engineering, Intergroup Coordination, and

then Peer Reviews. Then software organizations should focus on the Level 4 (Managed) Key Process

Areas (KPAs), Quantitative Process Management and then Software Quality Management. Finally,

software organizations should focus on the Level 5 (Optimizing) Key Process Areas (KPAs), Defect

Prevention, Technology Change Management, and Process Change Management.

The CMM seems to be consistent with W. Edwards Deming’s first three of fourteen points, nature of

variation, losses due to tampering (making changes without knowledge of special and common causes of

variation), and minimizing the risk from the above two (through the use of control charts). In other words,

W. Edwards Deming believed that minimizing variation is the key to organizational performance

improvement (but, only if the techniques to minimize variation are based on measurable decisions).

Likewise, the CMM asks that processes be stabilized, defined, and measured before software process

changes are implemented. Unfortunately, it takes many years to reach CMM Level 5 and less than 1% of

Using Cost Benefit Analysis to Develop SPI Strategies96

worldwide organizations are at CMM Level 5. Therefore, the CMM would have virtually no worldwide

organizations attempt process improvement. On the contrary, W. Edwards Deming meant that

organizations should take measurements on day one and then make process changes based on

measurement data (not wait many years to perform process improvements).

Austin and Paulish (1993), then of the Software Engineering Institute (SEI), conducted a qualitative

analysis and comparison of 13 “tactical” Software Process Improvement (SPI) methods beyond the

strategic organizational nature of the CMM (see Table 62).

 Table 62: SKI Comparison of Software Process Improvement (SPI) Methods

CMM Level Strategy Pros Cons

1 Estimation Fundamental to project planning Requires historical data

I ISO 9000 Required for many markets Emphasis on evidence only

1 - 2 Software Process Assessment Good first step to improvement Provides findings only

I - 2 Process Definition Provides improvement baseline Lack of skills with tools

1 - 2 Software Inspection Process Easy to begin Commonly used for code

1 - 2 Software Metrics Used with other methods Must be tailored to goals

I - 2 CASE Tools Automates process High investment costs

1 - 2 Interdisciplinary Group Method Promotes better teamwork Communication overhead

2 - 3 Software Reliability Engineering Provides field defect predictions Lack of training and skills

2 - 3 Quality Function Deployment Helps build the “right” products Difficult to manage

2 - 3 Total Quality Management Builds a “quality culture” Requires organization buy-in

3 - 4 Defect Prevention Process Makes classes of errors extinct Only for mature organizations

3 - 4 Clean Room Methodology Can result in high product quality Radically different approach

Austin and Paulish identified qualitative pros and cons of the 13 Software Process Improvement (SPI)

methods, as well as a mapping them to the CMM (as shown in Table 28). Only SEI CMM Level 4

organizations should attempt the Clean Room Methodology and the Defect Prevention Process. Only SEI

CMM Level 3 organizations should attempt Total Quality Management, Quality Function Deployment,

and Software Reliability Engineering. Only SEI CMM Level 2 organization should attempt

Interdisciplinary Group Methods, CASE Tools, Software Metrics, the Software Inspection Process,

Process Definition, and Software Process Assessment. Finally, SEI CMM Level 1 organizations may

attempt to use ISO 9000 and estimation. Since many worldwide software organizations aren’t at SEI

CMM Levels 3, 4, and 5, Austin and Paulish recommend that organizations shouldn’t use many powerful

SPI methods.

McConnell (1996) identified, defined, and compared 29 software process improvement (SPI) methods in

terms of potential reduction from nominal schedule (cycle-time reduction), improvement in progress visibility,

effect on schedule risk, chance of first-time success, and chance of long-term success (see Table 63).

Evolutionary prototyping, outsourcing, reuse, and timebox development are excellent for potential

reduction from nominal schedule (cycle-time reduction). Evolutionary delivery, evolutionary prototyping,

and goal setting (for maximum visibility) are excellent for improvement in progress visibility. Most

Software Process Improvement (SPI) methods are reported to have a positive effect on schedule risk.

Theory-W management, throwaway prototyping, top-10 risk lists, and user-interface prototyping have a

good chance of first-time success. Finally, many of the software process improvement (SPI) methods are

reported to result in a good chance of long-term success.

A DACS State-Of-The-Art Report 97

Grady (1997) identified, defined, and compared 11 Software Process Improvement (SPI) methods in use

throughout Hewlett Packard in terms of difficulty of change, cost of change, break-even time of change,

and percent expected cost improvement (see Table 64).

Grady reports that software reuse is the most difficult, most expensive, and has the longest breakeven

point, but has the greatest payoff. Grady reports that complexity analysis and program understanding are

the simplest, least expensive, and have short breakeven points, with the smallest payoffs. Rapid

prototyping and the Software Inspection Process are also attractive.

McConnell (1996) identified, defined, and compared 29 software process improvement (SPI) methods in

terms of potential reduction from nominal schedule (cycle-time reduction), improvement in progress visibility,

effect on schedule risk, chance of first-time success, and chance of long-term success (see Table 63).

Table 63: Construx Comparison of Software Process Improvement (SPI) Methods

SPI Method Cycle-Time Progress Schedule First-Time Long-Term

Reduction Visibility Risk Success Success

Change Board Fair Fair Decreased Very Good Excellent

Daily Build and Smoke Test Good Good Decreased Very Good Excellent

Designing for Change Fair None Decreased Good Excellent

Evolutionary Delivery Good Excellent Decreased Very Good Excellent

Evolutionary Prototyping Excellent Excellent Increased Very Good Excellent

Goal Setting (shortest schedule) Very Good None Increased Good Very Good

Goal Setting (least risk) None Good Decreased Good Very Good

Goal Setting (max visibility) None Excellent Decreased Good Very Good

Software Inspection Process Very Good Fair Decreased Good Excellent

Joint Application Development Good Fair Decreased Good Excellent

Life Cycle Model Selection Fair Fair Decreased Very Good Excellent

Measurement Very Good Good Decreased Good Excellent

Miniature Milestones Fair Very Good Decreased Good Excellent

Outsourcing Excellent None Increased Good Very Good

Principled Negotiation None Very Good Decreased Very Good Excellent

Productivity Environments Good None No Effect Good Very Good

Rapid-Development Languages Good None Increased Good Very Good

Requirements Scrubbing Very Good None Decreased Very Good Excellent

Reuse Excellent None Decreased Poor Very Good

Signing Up Very Good None Increased Fair Good

Spiral Life Cycle Model Fair Very Good Decreased Good Excellent

Staged Delivery None Good Decreased Very Good Excellent

Theory-W Management None Very Good Decreased Excellent Excellent

Throwaway Prototyping Fair None Decreased Excellent Excellent

Timebox Development Excellent None Decreased Good Excellent

Tools Group Good None Decreased Good Very Good

Top-10 Risks List None Very Good Decreased Excellent Excellent

User-lnterface Prototyping Good Fair Decreased Excellent Excellent

Voluntary Overtime Good None Increased Fair Very Good

Using Cost Benefit Analysis to Develop SPI Strategies98

Evolutionary prototyping, outsourcing, reuse, and timebox development are excellent for potential

reduction from nominal schedule (cycle-time reduction). Evolutionary delivery, evolutionary prototyping,

and goal setting (for maximum visibility) are excellent for improvement in progress visibility. Most

software process improvement (SPI) methods are reported to have a positive effect on schedule risk.

Theory-W management, throwaway prototyping, top-10 risk lists, and user-interface prototyping have a

good chance of first-time success. Finally, many of the software process improvement (SPI) methods are

reported to result in a good chance of long-term success.

Grady (1997) identified, defined, and compared 11 software process improvement (SPI) methods in use

throughout Hewlett Packard in terms of difficulty of change, cost of change, break-even time of change,

and percent expected cost improvement (see Table 64).

Table 64: HP Comparison of Software Process Improvement (SPI) Methods

Strategy Difficulty Cost Breakeven Savings

Product Definition Improvement Low Medium Medium 3 - 9%

Detailed Design Methods High Medium Long 3 - 12%

Rapid Prototyping Low Low Medium 5 - 12%

Systems Design Improvements Medium Medium Long 5 -12%

Software Inspection Process Low Medium Short 8 - 20%

Software Reuse High High Long 10 - 35%

Complexity Analysis Low Low Short 2 - 5%

Configuration Management High High Long 3 -10%

Certification Process Medium Medium Medium 3 - 6%

Software Asset Management High Medium Long 3 - 6%

Program Understanding Low Low Short 3 - 7%

Grady reports that software reuse is the most difficult, most expensive, and has the longest breakeven

point, but has the greatest payoff. Grady reports that complexity analysis and program understanding are

the simplest, least expensive, and have short breakeven points, with the smallest payoffs. Rapid

prototyping and the Software Inspection Process are also attractive.

McGibbon (1996) conducted a cost-benefit or return-on-investment analysis of three major vertical

Software Process Improvement (SPI) strategies or approaches, the Software Inspection Process, Software

Reuse, and the Clean Room Methodology, based on existing empirical data and analyses (see Figure 25).

Development costs were $1,861,821, rework costs were $206,882, maintenance costs were $136,362,

savings were $946,382, and SPI costs were $13,212 for the Software Inspection Process (with a return-on-

investment 71.63:1). Development costs were $815,197, rework costs were $47,287, maintenance costs

were $31,168, savings were $2,152,600, and SPI costs were $599,139 for Software Reuse (with a return-

on-investment of 3.59:1). Development costs were $447,175, rework costs were $39,537, maintenance

costs were $19,480, savings were $2,528,372, and SPI costs were $77,361 for Clean Room (with a return-

on-investment of 33:1).

A DACS State-Of-The-Art Report 99

Rico (1999) conducted a cost-benefit or return-on-investment analysis of three major vertical software

process improvement (SPI) strategies or approaches, the Personal Software Process (PSP), the Software

Inspection Process, and Testing, based on existing empirical data and analyses (see Table 65).

Figure 25. DACS Software Process Improvement (SPI) Study Results

Table 65: PSP, Software Inspection Process,

and Testing Comparison

Cost/Benefits PSP Inspection Test

Program Size 10 KSLOC 10 KSLOC 10 KSLOC

Start Defects 1,000 1,000 1,000

Review Hours 97.24 708 n/a

Review Defects 666 900 n/a

Detects per Hour 6.85 1.27 n/a

Start Defects 333 100 1,000

Test Hours 60.92 1,144 11,439

Test Defects 333 90 900

Defects per Hour 5.47 12.71 12.71

Total Hours 400 * 1,852 11,439

Total Defects 1,000 990 900

Quality Benefit 100X 10X n/a

Delivered Detects 0 10 100

Cost Benefit 29X 6X n/a

* PSP hours include development time—others only validation time

Using Cost Benefit Analysis to Develop SPI Strategies100

Review hours were 97.24, review efficiency was 67%, test hours were 60.92, total hours were 400, and

delivered defects were zero, for a quality benefit of 100X and a cost benefit of 29X over testing, using the

Personal Software Process (PSP). Review hours were 708, review efficiency was 90%, test hours were

1,144, total hours were 1,852, and delivered defects were 10, for a quality benefit of 10X and a cost

benefit of 6X over testing, using the Software Inspection Process. Test hours were 11,439, test efficiency

was 90%, and delivered defects were 100, using Testing. PSP hours included both development and test,

while the others did not.

McGibbon (1996) conducted a detailed cost-benefit analysis of the Clean Room Methodology, the

Software Inspection Process, and Walkthroughs, for a later comparison to traditional, Software Reuse, and

“full” software process improvement (see Table 66).

Table 66: Clean Room, Software Inspection Process, and Walkthrough Comparison

Cost/Benefits Clean Room Formal Inspection Informal Inspection

Lines of Code 39,967 39,967 39,967

Defects per KSLOC 5 7 7

Total Defects Expected 200 280 280

Design

% Defects Introduced 35% 35% 35%

Total Defects Introduced 70 98 98

% Defects Detected 80% 65% 40%

Defects Detected 56 64 39

Rework Hours/Defect 2.5 2.5 2.5

Total Design Rework 140 :159 98

Coding

% Defects Introduced 65% 65% 65%

Total Defects Introduced 130 182 182

% Defects Detected 98% 70% 35%

Defects Detected 141 151 84

Rework Hours/Defect 2.5 2.5 2.5

Total Design Rework 353 378 211

Test

Defects Found in Test 1 51 114

Rework Hours/Defect 25 25 25

Total Test Rework 22 1,271 2,861

% of Defects Removed 99% 95% 85%

Maintenance

Defects Left for Customer 2 14 42

Post Release Defects/KSLOC 0.05 0.35 1.05

Rework Hours/Defect 250 250 250

Total Maintenance Rework 500 3,497 1O,491

Maintenance $ $19,484 $136,386 $409,159

Totals

Total Rework Hours 1,014 5,306 13,660

Total Rework Costs $39,544 $206,918 $532,752

Effort $ + Maintenance $ $466,659 $2,618,814 $2,891,586

Clean Room $ Improvement $2,152,155 $2,424,927

Clean Room % Improvement 82% 84%

A DACS State-Of-The-Art Report 101

Total development defect removal efficiencies for the Clean Room Methodology and Formal and Informal

Inspections were 99%, 95%, and 85%, respectively. Total development rework hours for the Clean Room

Methodology and Formal and Informal Inspections were 515, 1,808, and 3,170, respectively. Total

Maintenance Rework for the Clean Room Methodology, Formal and Informal Inspections were 500,

3,497, and 10,491, respectively. Total maintenance costs for the Clean Room Methodology and Formal

and Informal Inspections were $19,484, $136,386, and $409,159, respectively. Total development and

maintenance costs for the Clean Room Methodology and Formal and Informal Inspections were

$466,659, $2,618,814, and $2,891,586, respectively.

The IEEE Standard for Software Reviews and Audits (IEEE Std 1028-1988) compares four types of

reviews for software management and engineering, Management Review, Technical Review, the Software

Inspection Process, and Walkthroughs (see Table 67). The objective of Management Reviews is to ensure

progress, recommend corrective action, and ensure proper allocation of resources. The objective of

Technical Reviews is to evaluate conformance to specifications and plans and ensure change integrity.

The objective of the Software Inspection Process is to detect and identify defects and verify resolution.

And, the objective of Walkthroughs is to detect defects, examine alternatives, and act as a forum for

learning. Management Reviews, Technical Reviews, and Walkthroughs are informal gatherings of usually

large numbers of people for the purpose of status reporting, information gathering, team building, and

information presentation and brainstorming. The Software Inspection Process is a highly structured

gathering of experts to identify defects in software work products ranging from requirement specifications

to the software source code. The Software Inspection Process has concise objectives, steps, time limits,

and lends itself to measurement and analysis.

Kettinger, Teng, and Guha, (1996) conducted a survey of 72 Business Process Reengineering (BPR) methods

and 102 automated BPR tools, designing an empirically derived contingency model for devising

organizational-specific BPR strategies by selecting from multiple BPR methods and tools. The model works

by first assessing individual organizational BPR requirements and propensity for change (see Table 68).

Kettinger’s, Teng’s, and Guha’s BPR methodology is composed of three steps, Assessing Project

Radicalness (project radicalness planning worksheet), Customizing the Stage-Activity (SA) Methodology

(a separate model for selecting appropriate BPR stages and activities), and Selecting Reengineering

Techniques (based on a categorization of BPR techniques). The project radicalness planning worksheet

(Table 68) is used to determine if a specific organization is best suited by low-impact process

improvement techniques, or whether the organization needs to be redesigned from the ground-up. The

stage-activity framework is applied by answering these four questions: How radical is the project? How

structured is the process? Does the process have high customer focus? Does the process require high

levels of IT enablement? Selecting reengineering techniques is accomplished by selecting from 11

technique groupings, project management, problem solving and diagnosis, customer requirement analysis,

process capture and modeling, process measurement, process prototyping and simulation, IS systems

analysis and design, business planning, creative thinking, organizational analysis and design, and change

management.

Tingey (1997) conducted a comparison of the Malcolm Baldrige National Quality Award, ISO 9001, and

the SEI’s Capability Maturity Model for Software (CMM), in order to help organizations choose the best

quality management system (see Table 69). According to Tingey, the Malcolm Baldrige National Quality

Award is the best quality management system. Malcolm Baldrige is 2.5X better than CMM for

Leadership, 44X better than ISO 9001 for Human Resources, 1.4X better than ISO 9001 for

implementing, 9.4X better than ISO 9001 for managing, 1.8X better than ISO 9001 for improving, and

3.6X better than CMM for motivating.

Using Cost Benefit Analysis to Develop SPI Strategies102

Table 67: Comparison of Reviews, Software Inspection Process. and Walkthroughs

Characteristics Management Review Technical Review Software Inspection Walkthrough

Objective Ensure progress. Evaluate conformance Detect and identify Detect defects.

Recommend corrective to specifications and defects. Verify Examine alternatives.

action. Ensure proper plans. Ensure change resolution. Forum for learning.

allocation of resources. integrity.

Delegated Controls

Decision Making Management team Evaluate conformance Detect and identify Detect defects.

charts course of action. to specifications and defects. Verify Examine alternatives.

Decisions are made at Ensure change integrity. resolution. Forum for learning.

the meeting or as a result

of recommendations.

Change Verification Change verification left Leader verifies as part Moderator verifies Change verification

to other project controls. of review report. rework. left to other project

controls.

Group Dynamics

Recommended Size Two or more persons. Three or more persons. Three to six persons. Two to seven persons.

Attendance Management, technical Technical leadership College of peers meet Technical leadership

leadership, and peer and peer mix. with documented peer mix.

mix. attendance.

Leadership Usually the responsible Usually the lead Trained moderator. Usually producer.

manager. engineer.

Procedures

Material Volume Moderate to high, Moderate to high, Relatively low. Relatively low.

depending on the specific depending on the specific

statement of objectives statement of objectives

for the meeting. for the meeting.

Presenter Usually the responsible Usually the lead Trained moderator. Usually producer.

manager. engineer.

Data Collection As required by applicable Not a formal project Formally required. Not a formal project

policies, standards, or requirement. May be requirement. May be

plans. done locally. done locally.

Outputs

Reports Management review Technical review Defect list and Walkthrough

report. reports. summary. Inspection report.

report.

Data Base Entries Any schedule changes No formal data base Defect counts, No formal database

must be entered into the required. characteristics, requirement.

project tracking database. severity, and meeting

attributes are kept.

A DACS State-Of-The-Art Report 103

Harrington (1995) conducted an analysis and comparison of six major organizational improvement

approaches, Total Business Management (TBM), Total Cost Management (TCM), Total Productivity

Management (TPM), Total Quality Management (TQM), Total Resource Management (TRM), and Total

Technology Management (TTM) frameworks or models (see Table 70).

Total Quality Management (TQM) seems to be the best organizational improvement model, scoring

affirmatively in 12 of 16 (75%) of the categories. Total Resource Management (TRM) comes in a close

second place, scoring affirmatively in 11 of 16 (69%) of the categories. Total Business Management

(TBM), Total Cost Management (TCM), and Total Technology Management (TTM) tied for third place,

scoring affirmatively in 10 of 16 (63%) of the categories. All six of the organizational improvement

frameworks seemed to be about the same on Harrington’s evaluation (demonstrating a good overall effect

of using all approaches).

Table 68: Business Process Reengineering (BPR) Contingency Model

Factor Question Process Process Radical

Improvement Redesign Reengineering

Strategic Centrality Is the targeted process merely tangential 1 ---- 2 ---- 3 ---- 4 ---- 5

 (1) or integral (5) to the firm’s Tangential Integral

strategic goals and objectives?

Feasibility of IT to change Does IT enable only incidental change 1 ---- 2 ---- 3 ---- 4 ---- 5

process (1) or fundamental process change (5)? Incidental Integral

Process breadth Is the scope of the process intra-functional 1 ---- 2 ---- 3 ---- 4 ---- 5

 (1) interorganizational (5)? Intra-functional Interorganizational

Senior management Is the senior management visibly removed 1 ---- 2 ---- 3 ---- 4 ---- 5

(1) or actively involved commitment (5) Removed Involved

in the BPR efforts?

Performance measurement Are the preferred performance measurement 1 ---- 2 ---- 3 ---- 4 ---- 5

criteria efficiency criteria based (1) or Efficiency Effectiveness

effectiveness based (5)?

Process functionality Is the process functioning marginally (1) 1 ---- 2 ---- 3 ---- 4 ---- 5

or is the process not functioning well at Marginally Not Well

all (5)?

Project resource Are only minimal resources (1) available to 1 ---- 2 ---- 3 ---- 4 ---- 5

support the process availability change or Scarce Abundant

are resources abundant (5)?

Structural flexibility Is the organizational structure rigid (1) or 1 ---- 2 ---- 3 ---- 4 ---- 5

is it flexibly conducive (5) to change and Rigid Flexible

learning?

Cultural capacity for Does the culture support the status quo (1) 1 ---- 2 ---- 3 ---- 4 ---- 5

or actively seek change participatory Status quo Adaptable

change (5)?

Management’s willingess Are only modest impacts on people tolerable 1 ---- 2 ---- 3 ---- 4 ---- 5

(1) or is management to impact people Modest Disruptive

willing to deal with the consequences of

distruptive impacts (5)?

Value chain target Is the BPR effort targeted at an internal 1 ---- 2 ---- 3 ---- 4 ---- 5

support process (1) or a core process (5)? Support Core

Using Cost Benefit Analysis to Develop SPI Strategies104

 Table 69: Malcolm Baldrige, ISO 9001, and SKI CMM Comparison

Criteria Malcolm Baldrige ISO 9001 SKI CMM

Malcolm Baldrige

Leadership 23.5 � 15.7 9.7

Information and Analysis 19.9 32.2 38.4 �
Strategic Planning 17.6 44.5 � 26.9

Human Resources 30.9 � 0.7 8.5

Process Management 1.5 5.5 � 5.2

Business Results 2.2 1.4 11.3 �
Customer Satisfaction 4.4 � 0 0

Total Quality Management

Planning 10.3 7.5 16.3 �
Implementing 13.2 � 9.6 11.4 �
Managing 6.6 � 0.7 0

Improving 12.5 � 6.9 9.5

Communicating 29.4 � 66.4 � 56.3

Training 4.4 � 0 0

Motivating 23.6 � 8.9 6.5

Table 70: Comparison of Enterprise Ouality Management Models

Criteria TBM TCM TPM TQM TRM TTM

Increases Market Share Yes Yes Yes Yes Yes Yes

Increases Return-on-lnvestment Yes Yes Yes Yes Yes Yes

Increases Value Added per Employee Yes Yes Yes No Yes No

Increases Stock Prices Yes Yes Yes Yes Yes Yes

Improves Morale No No No Yes No No

Improves Customer Satisfaction No No No Yes No Yes

Improves Competitive Position Yes Yes Yes Yes No Yes

Improves Reliability No No No Yes No Yes

Improves Maintainability No No No No No Yes

Improves Safety No No No No Yes No

Decreases Waste No Yes Yes Yes Yes No

Decreases Overhead Yes Yes Yes Yes Yes No

Decreases Inventory Yes Yes No No Yes No

Causes Layoffs Sometimes Yes Yes Sometimes Sometimes Sometimes

Increases the Number of Employees Sometimes No No Sometimes Sometimes Sometimes

Increases Profit Yes Yes Yes Yes Yes Yes

A DACS State-Of-The-Art Report 105

Rico (1998) conducted a cost-benefit or return-on-investment analysis of Software Process Improvement

(SPI) strategies, identifying three major classes of SPI strategies, Indefinite, Vertical Process, and Vertical

Life Cycle, creating a highly structured, empirically-derived analytical model to classify, evaluate, and

select SPI strategies (see Figure 26).

Figure 26. SPI strategy Empirical Analytical Model

Indefinite SPI strategies include, Kaizen, ISO 9000, Experience Factory, Goal Question Metric, Total

Quality Management, Capability Maturity Model, and Business Process Reengineering. Vertical Process

SPI strategies include, Configuration Management, Test, Inspection, Quality Estimation, Statistical

Process Control (SPC), Defect Classification, and Defect Prevention. Vertical Life Cycle SPI strategies

include, Personal Software Process, Defect Removal Model, and Product Line Management. Indefinite

SPI strategies involve inventing software processes by non-experts, Vertical Process Strategies involve

using proven software processes, and Vertical Life Cycle SPI strategies involve using proven software life

cycles.

Jones (1997b) conducted an analysis and comparison of ten major Software Process Improvement (SPI)

strategy classes their applicability based on organization size (see Table 71).

Using Cost Benefit Analysis to Develop SPI Strategies106

Table 71: SPR Comparison of Software Process Improvement (SPI) Methods

Organization Size

SPI Class SPI Technique Large Medium Small

Enterprise Quality Programs Baldrige Awards Maybe Maybe No

Quality Assurance Departments Yes Maybe No

Executive Quality Goals Yes Yes Maybe

Management Quality Goals Yes Yes Yes

SKI CMM Level 3, 4, or 5 Yes Maybe No

Quality Awareness and training In-House Seminars Yes Maybe No

Public Seminars Yes Yes Yes

Online Quality Forums Yes Yes Yes

Risk-Analysis Training Yes Maybe No

Quality Standards and Guidelines In-House Standards Yes Maybe No

IEEE Standards Maybe Maybe Maybe

ISO Standards Yes Yes Maybe

Quality Analysis Methods Assessments Yes Yes Maybe

Baseline Studies Yes Yes Maybe

Benchmark Comparisons Yes Yes Maybe

Risk Analysis Yes Yes Maybe

Quality Measurement Methods Function Point Normalization Yes Yes Yes

Defect Aging Measures Yes Yes Yes

Defect Distribution Measures Yes Yes Yes

Defect Severity Measures Yes Yes Yes

Root Cause Analysis Yes Maybe Maybe

Defect Prevention Methods Configuration Control Tools Yes Yes Yes

Change Control Boards Yes Maybe No

Design Inspections Yes Maybe Yes

Code Inspections Yes Yes Yes

Graphical Specification Methods Yes Yes Yes

Prototyping Yes Yes Yes

Risk Analysis Yes Maybe Maybe

Quality Function Deployment Maybe Maybe No

Certified Reusable Materials Yes Maybe Maybe

Non-Test Defect Removal Methods Design Inspections Yes Yes Yes

Code Inspections Yes Yes Yes

Usability Reviews Yes Maybe Maybe

Testing Methods Unit Test by Programmers Yes Yes Yes

Complexity Analysis Yes Yes Maybe

Regression Test by Specialists Yes Maybe No

Performance Test by Specialists Yes Maybe No

System Test by Specialists Yes Maybe No

Field Test by Clients or Customers Yes Yes Yes

Test Coverage Analysis Yes Yes Yes

Test Library Control Tools Yes Yes Yes

Test Case Reviews Maybe Maybe Maybe

Test Script Automation Yes Yes Yes

User Satisfaction Methods Usability Laboratories Yes No No

User Focus Groups Yes Maybe Maybe

User Satisfaction Surveys Yes Maybe Maybe

Post-Release Quality Methods Automated Defect Tracking Yes Yes Yes

Customer Support Specialists Yes Yes Maybe

Online Defect Reporting Yes Yes Yes

A DACS State-Of-The-Art Report 107

The ten SPI strategy classes included, enterprise quality programs, quality awareness and training, quality

standards and guidelines, quality analysis methods, quality measurement methods, defect prevention

methods, non-test defect removal methods, testing methods, user satisfaction methods, and post-release

quality methods. Jones’ analysis merely indicates that most SPI strategies apply to organizations of all

sizes, without any sharply discriminating factors.

Haskell, Decker, and McGarry (1997) conducted an economic analysis and comparison of Software

Engineering Institute (SEI) Capability Maturity Model for Software (CMM) Software Capability

Evaluations (SCEs) and ISO 9001 Registration Audits at the Computer Sciences Corporation (CSC),

between 1991 and 1997 (see Table 72). CSC required seven years of elapsed calendar time and 4,837 staff

hours or 2.33 staff years of actual effort to achieve SEI CMM Level 3 compliance, while requiring one

year of elapsed calendar time and 5,480 staff hours or 2.63 staff years of actual effort to achieve ISO 9001

Registration. Some of the major differences include a 7:1 advantage in elapsed calendar time to become

ISO 9001 Registered in one attempt, versus multiple SEI SCE attempts over a seven-year period.

Wang, Court, Ross, Staples, King, and Dorling (1997a) conducted a technical analysis and comparison of

international Software Process Improvement (SPI) strategies, identifying five leading models, Software

Process Reference Model (SPRM), Software Process Improvement and Capability Determination

(SPICE), Capability Maturity Model for Software (CMM), BOOTSTRAP, and ISO 9000 (see Table 73).

Table 72: Software Capability Evaluations (SCEs) and ISO 9001 Registration Audits

Factors SCE SCE ISO 9001 SCE ISO 9001

Date 10/91 2/96 5/97 11/97 to 1/98 11/97

Staff Months 2 4 12 2 6

Staff Hours 850 1,800 3,400 800 500

External Consultants • Minimal • None • 200 Hours • None • None

• Consultant

• Internal Auditor

• Pre-Registration

Assessment

Preparation Strategy • Internal Assessments • Gap Analysis • Implement Plan • Action Items • Process

• Lessons Leamed • External Experts • Awareness Improvements

• Deployment Focus • Train Staff Seminars • Management

• Deployment Focus • Internal Reviews

 Assessments • Internal Audits

• Corrective Actions

Result Few KPAs Satisfied 13 KPAs Satisfied ISO 9001 SKI CMM ISO 9001

Registration Level 3 Registration

Using Cost Benefit Analysis to Develop SPI Strategies108

Table 73: Comparison of SPRM, SPICE, CMM, BOOTSTRAP, and ISO 9000

SPRM Subsystem SPRM Process Category SPRM SPICE CMM BOOTSTRAP ISO 9000

Organization Organizational Structure 13 10 0 7 5

Organization 26 21 20 8 2

Customer Service 42 30 I 8 18

Software Engineering Software Engineering Methodology 23 7 8 10 0

Software Development 60 29 12 43 30

Software Development Environment 32 11 0 11 14

Management Software Quality Assurance (SQA) 78 22 18 45 52

Project Planning 45 24 22 18 16

Project Management 55 11 42 25 12

Contract & Requirement Management 42 27 16 14 18

Document Management 17 5 5 8 6

Human Management 11 4 6 4 4

444 201 150 201 177

According to Wang et al. the Software Engineering Institute’s (SEI’s) Capability Maturity Model for

Software (CMM) is the weakest SPI model by far, accounting for only 33.7% of the necessary software

management and engineering requirements suggested by the SPRM SPI model. SPICE and BOOTSTRAP

are reported to account for 45% of SPRM’s requirements, while IS0 9000 helps bring up the rear, meeting

40% of SPRM’s requirements. SPRM is reported to be a super SPI model composed of all of SPICE’s

201, BOOTSTRAP’s 201, ISO 9000’s 177, and the SEI CMM’s 150 requirements. After redundancy

elimination, SPRM is left with 407 common requirements plus 37 new ones for a total of 444.

Wang, Court, Ross, Staples, King, and Dorling (1997b) conducted a technical analysis and comparison of

international Software Process Improvement (SPI) strategies, identifying four leading models,

BOOTSTRAP, ISO 9000, Capability Maturity Model for Software (CMM), and Software Process

Improvement and Capability Determination (SPICE) (see Table 74).

Table 74: Comparison of BOOTSTRAP, ISO 9000, CMM, and SPICE

SPRM Subsystem SPRM Process Category BOOTSTRAP ISO 9000 CMM SPICE

Organization Organizational Structure 8% 4% 1% 8%

Organization 7% 3% 12% 20%

Customer Service 7% 12% 1% 30%

Software Engineering Software Engineering Methodology 7% 1% 7% 7%

Software Development 24% 20% 11% 24%

Software Development Environment 9% 7% 1% 12%

Management Software Quality Assurance (SQA) 35% 39% 15% 23%

Project Planning 18% 14% 16% 24%

Project Management 25% 9% 31% 11%

Contract & Requirement Management 8% 14% 12% 28%

Document Management 6% 5% 3% 5%

Human Management 7% 3% 5% 4%

13% 11% 10% 16%

A DACS State-Of-The-Art Report 109

After aggregating the individual requirements for each of the four SPI models, BOOTSTRAP, ISO 9000,

CMM, and SPICE, Wang et al. divided each model’s requirements by the aggregate number of

requirements for each of the 12 SPRM Process Categories. While individual models performed widely for

individual SPRM Process Categories, the average of all of the SPRM Process Categories for each of the

four SPI models was surprisingly similar. SPICE led the way meeting an average of 16% of the total

aggregate requirements for the four models. BOOTSTRAP came in second place with 13%, ISO 9000

with 11%, and the CMM trailing with an average of 10% of the overall aggregate requirements. This

analysis and comparison differs from Wang et al. (1997a) in that each of the four SPI models were only

compared to each other.

Wang, King, Dorling, Patel, Court, Staples, and Ross (1998) conducted a survey of worldwide software

engineering practices, identifying six major process classes (see Table 75).

Using Cost Benefit Analysis to Develop SPI Strategies110

Table 75. Worldwide Survey Software Best Practices

Business Process Class Business Process Activity Weight Priority In-Use Effect

Development Process Definition Evaluate Software Development Methodologies 3.9 93.8 87.5 78.6

Model Software Process 3.8 94.1 81.3 100

Describe Activities and Responsibilities 4.3 100 87.5 100

Establish Task Sequences 3.8 81.3 93.3 93.3

Identify Process Relationships 3.7 93.3 92.9 92.9

Document Process Activities 3.9 87.5 92.9 86.7

Identify Control Point of Project 3.8 93.8 71.4 84.6

Maintain Consistency across all Processes 3.6 80.0 57.1 76.9

Develop Software according to Defined Process 4.3 100 78.6 92.9

Derive Project Process from Organization Standard 4.3 100 72.7 92.9

Approval Processes and Equipment 3.5 85.7 71.4 76.9

Identify Special Requirements for Special Systems 4.3 100 85.7 93.3

Requirements Analysis Analyze Requirement according to Defined Process 4.1 100 84.6 83.3

Specify Formal Requirements 3.0 73.3 53.3 79.6

Define Requirements Feasibility/Testability 3.8 93.3 76.9 75.0

Prevent Ambiguities in Specification 3.9 93.3 78.6 84.6

Interpret/Clarify Requirements 3.7 94.1 68.8 84.6

Specify Acceptance Criteria 3.8 87.5 100 86.7

Allocate Requirements for Processes 3.1 90.9 44.4 87.5

Adopt Requirements Acquisition Tools 2.1 28.6 7.7 80.0

Design Design System according to Defined Process 3.9 93.8 78.6 84.6

Design Software Architecture 4.2 100 100 100

Design Module Interfaces 4.1 100 81.3 87.5

Develop Detailed Design 3.6 88.2 93.8 76.5

Establish Document Traceability 3.9 88.9 63.6 78.6

Specify Final Design 3.8 86.7 64.3 78.6

Define Design Change Procedure 4.0 100 53.3 91.7

Adopt Architectural Design Tools 2.9 56.3 43.8 80.0

Adopt Module Design Tools 2.9 62.5 73.3 76.9

Coding Code according to Defined Process 3.8 87.5 68.8 85.7

Choose proper Programming Language(s) 3.8 93.8 81.3 92.9

Develop Software Modules 4.0 93.3 100 92.3

Develop Unit Verification Procedures 3.8 93.8 68.8 86.7

Verify Software Modules 4.1 100 80.0 92.9

Document Coding Standards 4.1 88.2 82.4 93.3

Define Coding Styles 3.6 82.4 56.3 66.7

Adopt Coding-Support/Auto-Generation Tools 2.9 60.0 28.6 50.0

Module Testing Testing according to a Defined Process 4.5 100 82.4 93.8

Determine Test Strategy 4.4 100 76.5 93.8

Specify Test Methods 4.1 94.1 76.5 92.9

Generate Test 3.8 93.8 75.0 84.6

Conduct Testing 4.3 100 86.7 85.7

Adopt Module Testing Tools 3.1 71.4 57.1 69.2

Integration and System Testing Integrations Test according to Defined Process 4.3 100 80.0 92.9

Acceptance Test according to Defined Process 4.1 100 80.0 92.9

System Tests Generation 3.8 92.3 69.2 83.3

Test Integrated System 4.1 100 84.6 91.7

Adopt Integration Tools 2.8 53.8 16.7 63.6

Adopt Module Cross-Reference Tools 3.1 76.9 16.7 81.8

Adopt System Acceptance Testing Tools 3.1 76.9 25.0 90.9

A DACS State-Of-The-Art Report 111

The worldwide opinion survey results for each of the 49 individual Business Process Activities (BPAs)

look surprisingly similar. The median weight appears to be about four, on a scale of one to five, for all 49

BPAs. The median weight for Priority (percentage of organizations rating the BPA highly significant), In-

Use (percentage of organizations that used the BPA), and Effect (percentage rating the BPA effective)

appears to be homogeneously in the 80s. The Design Software Architecture BPA scored 100s for Priority,

In-Use, and Effective, and some testing BPAs had a surprising abundance of 100s. According to Rico

(1999), testing is one of the least effective verification and validation activities from a quantitative

standpoint.

McConnell (1996) performed a qualitative analysis of ten software life cycle models, pure waterfall, code-

and-fix, spiral, modified waterfall, evolutionary prototyping, staged delivery, evolutionary delivery,

design-to-schedule, design-to-tools, and commercial-off-the-shelf (see Table 76). Works with poorly

understood requirements, works with unprecedented systems, produces highly reliable system, produces

system with large growth envelope, manages risks, can be constrained to a predefined schedule, has low

overhead, allows for midcourse corrections, provides customer with process visibility, provides

management with progress visibility, and requires little manager or developer sophistication, were 11

criteria used.

Table 76: Construx Comparison of Software Development Life Cvcles

Software Life-Cycle Ambiguity Innovation Reliability Growth High Risk Schedule Overhead Change Oversight Manage Difficulty

Pure Waterfall Poor Poor Excellent Excellent Poor Fair Poor Poor Poor Fair Fair

Code and Fix Poor Poor Poor Poor-Fair Poor Poor Excellent Poor-Excel Fair Poor Excellent

Spiral Excellent Excellent Excellent Excellent Excellent Fair Fair Fair Excellent Excellent Poor

Modified Waterfall Fair Excel Fair-Excel Excellent Excellent Fair Fair Excellent Fair Fair Fair Excel Poor-Fair

Evolutionary Prototyping Excellent Poor-Fair Fair Excellent Fair Poor Fair Excellent Excellent Fair Poor

Staged Delivery Poor Poor Excellent Excellent Fair Fair Fair Poor Fair Excellent Fair

Evolutionary Delivery Fair-Excel Poor Fair-Excel Excellent Fair Fair Fair Fair-Excel Excellent Excellent Fair

Design-to-Schedule Poor-Fair Poor Fair Fair-Excel Fair-Excel Excellent Fair Poor-Fair Fair Excellent Poor

Design-to-Tools Fair Poor-Excel Poor-Excel Poor Poor-Fair Excellent Fair-Excel Excellent Excellent Excellent N/A

Cornmercial-Off-The-Shelf Excellent Poor-Excel Poor-Excel N/A N/A Excellent Excellent Poor N/A N/A Fair

Using Cost Benefit Analysis to Develop SPI Strategies112

This page intentionally left blank

A DACS State-Of-The-Art Report 113

Methodology

As stated, the objective of this study involves “Using Cost Benefit Analyses to Develop a Pluralistic

Methodology for Selecting from Multiple Prescriptive Software Process Improvement (SPI) Strategies.”

This chapter satisfies these objectives by designing, constructing, and exercising a multi-part

methodology consisting of a Defect Removal Model, Cost and Benefit Data, Return-on-Investment

Model, Break Even Point Model, and Costs and Benefits of Alternatives, which all lead up to a Cost and

Benefit Model (as shown in Figure 27).

Figure 27. Methodology for Evaluating and Selecting Costs and Benefits

Costs and benefits of SPI strategies will be evaluated by a variety of interrelated techniques, starting with

the Defect Removal Model. The Defect Removal Model, as explained later, is a technique for evaluating

SPI method effectiveness, and once economic models are factored in, provides an empirically valid

approach for comparing the costs and benefits of SPI methods. Obviously, existing cost and benefit data

for SPI methods selected from the Literature Survey will be judiciously factored into, and drive, each of

the individual analytical models. A Return-on-Investment (ROI) Model will be designed, based on the

Defect Removal Model and populated by empirical cost and benefit data, in order to arrive at quality,

productivity, cost, break even, and of course, ROI estimates. Eventually, a SPI strategy Cost and Benefit

Model will be constructed from Cost and Benefit Criteria, SPI Strategy Alternatives, and Cost and

Benefits of Alternatives.

Using Cost Benefit Analysis to Develop SPI Strategies114

The design of the Methodology was significantly influenced by McGibbon’s (1996), Jones’ (1996 and

1997a), Grady’s (1994 and 1997), and Rico’s (1999) Defect Removal Model-based comparisons of SPI

costs and benefits. An analysis of SPI costs and benefits by Herbsleb, Carleton, Rozum, Siegel, and

Zubrow (1994), perhaps the most common SPI method cost and benefit study in existence, also served as

primary influence for the design of the Methodology.

McGibbon’s (1996) study, however, was the primary influence for two reasons, it is comprehensive in

nature, and it exhibits a uniquely broad range of comparative economic analyses between SPI methods. In

addition, McGibbon’s study stands alone in unlocking economic analyses associated with the Clean Room

Methodology, Software Reuse, and even the Software Inspection Process. McGibbon’s study goes even

further than that, in creating and establishing a valid empirically-based methodology for using existing

cost and benefit data and analyses, for evaluating and selecting SPI methods. Furthermore, McGibbon’s

study implicitly, perhaps incidentally or accidentally, focuses on “prescriptive” SPI methods, which is the

principal objective of this study.

Grady’s (1997) text on SPI strategies also influenced the design and direction of the Methodology,

explicitly identifying the Software Inspection Process as having an overwhelming impact on bottom line

organizational performance (as shown in Figure 13). Thus, Grady’s works helped justify the creation and

significance of the ROI Model, which will be explained in greater detail later.

Rico’s (1999) Defect Removal Model-based SPI method comparison, however, was the final influence in

selecting and fully designing the Methodology, highlighting the vast economic advantages that one SPI

strategy may have over another. In fact, Rico’s study was the starting point for implementing the

Methodology, which quickly picked up a lot of momentum and took on an entire life of its own. After

only a few minutes of briefly extending Rico’s analyses, the results proved mesmerizingly phenomenal,

and thus the Methodology was conceived. In fact, the results of the Methodology, and later the data

analyses, exceeded all expectations. And, just to imagine that the final results were preliminarily yielded

after only a few moments of additional permutations involving Rico’s study is truly amazing.

Herbsleb’s, Carleton’s, Rozum’s, Siegel’s, and Zubrow’s (1994) study also helped justify the use of

existing empirical data for analyzing and evaluating SPI methods and strategies. In fact, their study

significantly influenced the selection of the Cost and Benefit Criteria. Herbsleb’s, Carleton’s, Rozum’s,

Siegel’s, and Zubrow’s study involved averaging of reported cost and benefits, much like McGibbon’s

(1996), helping justify the use of this technique here.

Kan’s (1995) seminal masterpiece created the final justification, validation, and foundation of this Defect

Removal Model-based Methodology. Kan’s (1991 and 1995) in vivo (industrial) experiments and

applications of the Defect Removal Model were invaluable to justifying the basis for this Methodology,

and providing the confidence to advance this study.

A DACS State-Of-The-Art Report 115

Cost and Benefit Criteria

Three cost criteria and five benefit criteria for a total of eight criteria were chosen with which to evaluate,

assess, and analyze SPI alternatives: Training Hours, Training Cost, Effort, Cycle Time, Productivity,

Quality, Return-on-Investment, and Break Even Hours. These criteria were chosen because of their

commonality and availability as exhibited by Table 40, Reclassification of 487 Metrics for Software

Process Improvement (SPI), Figure 11, Citation Frequency of Metrics for Software Process Improvement

(SPI), and Table 57, Survey of Software Process Improvement (SPI) Costs and Benefits (see Table 77).

Table 77: Criteria for Evaluating Software Process Improvement (SPI) Alternatives

Criterion Definition

Training Hours Training hours refer to the number of person-hours of formal classroom

instruction applied for teaching a software process

Training Cost Training cost refers to the number of training hours plus training fees and travel

expenses such as air fare, meals, hotels, car rental, and other applicable training

costs

Effort Effort refers to development effort—the effort required to design, code, unit

test, and system test, measured in person-months (Come, Dunsmore, and Shen,

1986)

Cycle Time Cycle time or duration is defined as the elapsed time in hours or months during

which development effort proceeds without interruption (Come, Dunsmore,

and Shen, 1986)

Productivity Productivity is the number of lines of source code produced per programmer-

month (person-month) of effort (Come, Dunsmore, and Shen, 1986)

Quality Quality or defect density is the number of software defects committed per

thousand lines of software source code (Come, Dunsmore, and Shen, 1986)

Return-on-lnvestment Return-on-investment metrics are collected for the purpose of measuring the

magnitude of the benefits relative to the costs (Lim, 1998)

Break Even Hours Break even hours are defined as the level of activity at which an organization

neither earns a profit nor incurs a loss (Garrison and Noreen, 1997)

Table 39, Survey of Metrics for Software Process Improvement (SPI), showed 74 broad metric classes

and 487 individual software metrics. However, Figure 11, Citation Frequency of Metrics for Software

Process Improvement (SPI), reclassified the 74 classes of 487 metrics into 11 classes: Productivity (22%),

Design (18%), Quality (15%), Effort (14%), Cycle Time (9%), Size (8%), Cost (6%), Change (4%),

Customer (2%), Performance (1%), and Reuse (1%). This helped influence the selection of the eight

criteria for SPI cost/benefit analysis, since later quantitative analyses will be based on the existence and

abundance of software metrics and measurement data available in published sources.

But, availability is not the only reason these eight criteria were chosen. These eight criteria were chosen

because it is believed that these are the most meaningful indicators of both Software Process and Software

Process Improvement (SPI) performance, especially, Effort, Cycle Time, Productivity, Quality, Return-on-

Investment (ROI), and Break Even Hours. Effort simply refers to cost, Cycle Time refers to duration,

Productivity refers to number of units produced, Quality refers to number of defects removed, ROI refers

Using Cost Benefit Analysis to Develop SPI Strategies116

to cost saved, and Break Even refers to length of time to achieve ROI. So, “face validity” is an overriding

factor for choosing these criteria, organizations have chosen these software metrics to collect and report

upon, doing exactly that over the years. Thus, this is the reason these data are so abundantly available.

Quality software measurement data will prove to be a central part of this analysis (and this thesis, as

reported earlier), and the direct basis for a Return-on-Investment (ROI) model that will act as the

foundation for computing ROI itself. Thus, the Quality criterion is an instrumental factor, and it is

fortunate that SPI literature has so abundantly and clearly reported Quality metric and measurement data,

despite Quality’s controversial and uncommon usage in management and measurement practice. The SEI

reports that approximately 95.7% of software organizations are below CMM Level 4. CMM Level 4 is

where software quality measurement is required. It is safe to assert that 95.7% of software organizations

do not use or collect software quality measures.

Training Hours

Training Hours refers to the number of direct classroom hours of formal training required to instruct and

teach software managers and engineers to use a particular SPI method. Some authors, most notably

McGibbon (1996), assert that Training Hours are a significant factor when considering the choice of SPI

methods. For instance, the Personal Software Process (PSP) requires 80 hours of formal classroom

instruction per person, in order to teach the PSP’s software engineering principles. While, some methods,

such as the Software Inspection Process, are reported to use as little as 12 hours of formal classroom

instruction. So, one might assert that PSP training takes nearly seven times as many resources as the

Software Inspection Process, these numbers will prove to be far less significant. For instance, due to the

efficiency and productivity of using the PSP, the PSP will exhibit an ROI of 143:1 over the Software

Inspection Process. However, while Training Hours were initially thought to be a significant

discriminating factor in choosing SPI methods that doesn’t seem to play out, Training Hours are no less

important. For both small and large organizations on a tight schedule and budget, Training Hours may still

be considered an important issue. This is a fruitful area for future research, optimal Training Hours for

both teaching a SPI method and achieving optimal process efficiency and effectiveness. One and half days

for any SPI method seems too short, while it has to be questioned whether 80 hours is too much for the

fundamental precepts of a method such as the PSP. Another topic of controversy is whether Training

Hours should be charged to organizational overhead (that is, profits) or to project time. Conventional

wisdom holds that Training Hours would negatively impact schedule. Later analysis will challenge these

notions indicating that it is possible to directly incur Training Hours and still show a significant ROI over

the absence of the SPI method. This is also a fruitful area for future research.

Training Cost

Training Cost is the conversion of Training Hours into monetary units, principally fully-burdened person-

hours (base rate of pay plus benefits and corporate profits), in addition to ancillary costs such as air fare,

transportation, hotels, meals, per diem, training charges, materials, consultant costs, and other fees. This

becomes especially significant when the SPI method is of a uniquely proprietary nature, such as SEI

CMM, Authorized Lead Evaluator (Software Capability Evaluation—SCE), Authorized Lead Assessor

(CMM-Based Assessment for Internal Process Improvement—CBA-IPI), Authorized PSP Instructor, and

even basic PSP Training. Each of the training courses mentioned are closely guarded trademarked SPI

methods of the SEI (of which Training Cost over Training Hours comes at a high price). McGibbon

(1996) didn’t mention Training Cost as defined here, in his SPI cost/benefit analysis of Software Reuse,

Clean Room Methodology, and the Software Inspection Process. Again, later analysis will show that

Training Costs are seemingly dwarfed by the ROI of using particular SPI methods. However, PSP, SCE,

A DACS State-Of-The-Art Report 117

and CBA-IPI costs of 15 to 25 thousand dollars per person (not including labor costs) appears daunting at

first and may cause many not to consider the use of these seemingly premium-priced SPI methods.

However, as mentioned earlier, carefully planned and managed Training Costs, may still prove to have a

positive ROI, even when directly charged to a project.

Effort

Effort refers to the number of person-hours required in order to use a SPI method when constructing

(planning, managing, analyzing, designing, coding, and testing) a software-based product. Effort

translates directly into cost, which is by far the single most influential factor when choosing a SPI method

(or at least it should be). Effort establishes a basis for measuring cost, time, effectiveness, efficiency, ROI,

and acts as a basis for comparative analyses. Unfortunately, Effort is a software metric, and software

organizations don’t usually apply software metrics (less than 95.7% according to the SEI). What this

means is that organizations don’t usually track the costs of individual activities, and rarely track macro-

level costs, such as overall project cost. It’s not unusual for organizations to spend large amounts of

overhead before projects begin, engage in projects without firmly defined beginning and end-points, and

then continue spending money on projects well after their formal termination. In other words, it is quite

rare for an organization to firmly assert the cost of even a single project, much less a single process,

activity, or SPI method. Once again, it’s not unusual for organizations to spend hundreds or even

thousands of uncounted person-hours, and then re-plan or redirect without the slightest concern for

person-hours spent-to-date. (These numbers may range into the hundreds of thousands or even millions

untracked and unaccounted-for person-hours in monolithic programs and projects, especially in defense

and aerospace.) For the purposes of this study and analysis, relatively concise effort is asserted, used, and

analyzed, especially for the PSP, Software Inspection Process, Clean Room Methodology, and Software

Test. Very authoritative studies were used to quantify the costs of Software Reuse and the Defect

Prevention Process. The costs associated with ISO 9000 were also confidently authoritative, while the

SEI’s CMM costs were the least rigorously understood, yet very well analyzed by Herbsleb, Carleton,

Rozum, Siegel, and Zubrow (1994). In other industries, such as microprocessor design and development,

process improvement costs are primarily in the form of research and development and in capital

investments, overseas expansion, real estate, facilities, state-of-the-art equipment, and long-term process

calibration (Garrison and Noreen, 1997). While, each of the SPI methods examined in this study were

100% human intensive (not involving expenditures in capital investments).

Cycle Time

According to Garrison and Noreen (1997), Cycle Time is “the time required to make a completed unit of

product starting with raw materials.” In simple terms, Cycle Time is the length or duration of a software

project constrained by a finite beginning and ending date, measured in person-hours, person-days, or

person-months. Cycle Time answers the question, “How long does it take?” Cycle Time and Effort are not

the same. For instance, whether a software product takes eight person-hours or twelve person-hours over

the course of a single 24-hour period such as a business day, the Cycle Time is still a single day. For

example, eight people can work eight hours each on a Monday jointly producing a software product.

While, 64 person-hours or eight person-days were consumed, the Cycle Time is a single day. When time-

to-market is a concern, or just plainly meeting a software project schedule, Cycle Time is an extremely

important factor in addition to Effort. Measuring Cycle Time, or Cycle Time reduction, becomes an

important aspect of measuring the use of a particular SPI method. Cycle Time is especially important in

producing software products before competitors, or fully realizing the revenue potential of existing

products. For instance, being the first-to-market and extending market presence as long as possible before

Using Cost Benefit Analysis to Develop SPI Strategies118

competitive market entrance allows for maximization of revenue. In addition, releasing a new product

before existing products reach full revenue potential prematurely interrupts the revenue potential of

existing products. Most organizations rarely have the maturity to concisely control revenue potential and

would be satisfied to manage Cycle Time predictability. Only extremely rare organizations have the

management discipline and maturity to plan and manage a continuous stream of products over extended

periods of time based on Cycle Time measurements.

Productivity

According to Conte, Dunsmore, and Shen (1986), “Productivity is the number of lines of source code

produced per programmer-month (person-month) of effort.” Humphrey (1995) similarly states,

“Productivity is generally measured as the labor hours required to do a unit of work.” Humphrey goes on

to state, “When calculating Productivity, you divide the amount of product produced by the hours you

spent.” Therefore, Productivity is a measure of how many products and services are rendered (per unit of

time). Productivity is a useful measure of the efficiency or inefficiency of a software process. So,

Productivity is a naturally useful measure for SPI. Productivity can be a measure of the number of final or

intermediate products. For instance, Productivity may be measured as the number of final software

products such as word processors per unit of time (typically every one or two years). Or, Productivity may

be measured as the number of intermediate software work products. Software Productivity has historically

taken on this latter form of measurement, intermediate software work products. The intermediate software

work product most commonly measured is source lines of code (SLOC) per person month. Thus, this is

the most commonly available software productivity data measured, collected, and available in published

literature. Unfortunately, SLOC isn’t the only intermediate software work product available for software

Productivity measurement. Other common intermediate software work products available for counting are

requirements, specifications, design elements, designs, tests, and software management artifacts such as

project plans, schedules, estimates, and work breakdown structures. Software Productivity measurement

is a highly controversial and much maligned discipline. First, is a misunderstanding of what is being

represented by typical software Productivity measurements, SLOC per person-month. This metric can

typically be measured in the following way, divide the total number of SLOC produced as part of a final

software product by total Effort (previously discussed). This yields normalized productivity for a given

software product. This is the source of common confusion surrounding software Productivity

measurement. Many consider this measurement (SLOC/Effort) to be useful only for measuring the

programming phase of development, and a grossly insufficient measure of overall software life cycle

Productivity measurement (arguing that SLOC/Effort is not applicable to measuring analysis, design, or

testing Productivity). Nothing could be further from the truth. SLOC/Effort is a simple but powerful

measure of overall software life cycle Productivity measurement in its normalized form. This doesn’t

mean that measuring productivity in other terms isn’t as equally useful or powerful. For example, number

of requirements produced per analysis phase hour would be an exemplary software Productivity measure.

This however, doesn’t discount the usefulness of SLOC/Effort as a powerful software Productivity

measure in any way, shape, or form. While, software life cycle-normalized software Productivity

measurements using SLOC are commonly misunderstood, there’s another controversy surrounding

software Productivity measurement associated with SLOC. Jones (1998) argues that SLOC is a poor

measure to be used as a basis for software Productivity measurements because of the difficulty in

generalizing organizational software Productivity measurements using SLOC. There are many

programming languages of varying levels of power, usability, abstraction, and difficulty. What might take

one SLOC in Structured Query Language (SQL) may take 27 SLOCs of Assembly. This may lead some to

believe that SQL is low-productivity language because it results in fewer SLOC, while in fact is it may

A DACS State-Of-The-Art Report 119

actually result in higher Productivity. There are two basic problems with Jones’ arguments. The first is

that it doesn’t take the same Effort and cost to analyze, design, code, test, and maintain one line of SQL as

it does 27 lines of Assembly. If it did (and it doesn’t), it would be 27 times more productive to program in

Assembly than SQL. In fact, we know this to be the exact opposite. According to Jones’ own data, it is 27

times more productive to program in SQL than Assembly. An ancillary problem, but nevertheless more

important, is Jones’ insistence on generalizing software Productivity measurement data across

organizations. Statistical Process Control (SPC) theory (Burr and Owen, 1996) asserts that even if two

organizations used the same programming language or even the identical software Productivity

measurement strategy (even Jones’ non-SLOC based software Productivity measurement methodology—

Function Points), mixing software Productivity data between disparate organizations is not a useful

strategy. In other words, SPC tells us that software Productivity of one organization does not imply

software Productivity of another because of the differences in process capability (even with extremely

stable and automated-intensive processes). This fails to even mention the gross structural inadequacy of

the Function Points method itself (Humphrey, 1995).

Quality

Quality, as defined and measured here, will take the common form of Defect Density. According to Conte,

Dunsmore, and Shen (1986), “Defect Density is the number of software defects committed per thousand

lines of software source code.” Once again, Defect Density is a simple but extremely powerful method,

for not only measuring Quality, but also efficiently managing software projects themselves. Defect

Density, like Productivity, commonly takes the software life cycle-normalized form of total number of

defects found in all life cycle artifacts divided by the total number of SLOC. Like Productivity, many

consider Defect Density metrics to be of overall limited usefulness to the software life cycle, being only

applicable to programming phases of software product development (ignoring planning, analysis, design,

test, and maintenance). However, Kan (1995) and Humphrey (1995) have convincingly demonstrated that

Defect Density, in its software life cycle-normalized form, is a highly strategic, single point metric upon

which to focus all software life cycle activity for both software development and SPI. While, Kan’s

seminal masterpiece gives a much greater scholarly portrait of sophisticated metrics and models for

software quality engineering, Humphrey breaks Defect Density down into its most practical terms,

Appraisal to Failure Ratio. Humphrey has demonstrated that an optimal Appraisal to Failure Ratio of 2:1

must be achieved in order to manage software development to the peak of efficiency. While, Kan

encourages the use of Rayleigh equations to model defect removal curves, Humphrey presents us with the

practical saw-tooth form, two parts defects removed before test and one part during test, resulting in very

near zero defect levels in finished software products. Since, defects found in test cost 10 times more than

defects found before test, and 100 times more after release to customers, Humphrey has found that finding

67% of defects before test leads to optimal process performance, minimal process cost, and optimal final

software product quality. The other common argument against the use of Defect Density metrics is that

they seem to be rather limited in scope, ignoring other more encompassing software life cycle

measurements. Again, Humphrey’s Defect Density Metrics Appraisal to Failure Ratio-based methodology

has proven that metrics need not be inundating, overwhelming, all encompassing, and sophisticated.

People seem to insist on needless sophistication in lieu of powerful simplicity. Probably the more

prevalent objection to the use of Defect Density Metrics seems to be an intuitive objection to the notion

that Quality cannot be adequately represented by Defect Density. Quality, rather intuitively, takes the form

market success, popularity, usefulness, good appearance, price, market share, good reputation, good

reviews, and more importantly innovation. Defect Density doesn’t capture any of the aforementioned

characteristics. In fact, defect-prone products have been known to exhibit the intuitive characteristics of

Using Cost Benefit Analysis to Develop SPI Strategies120

high product quality, and software Products with exemplary Defect Densities have been considered of

utterly low quality. This is merely a common confusion between product desirability and Quality.

Customer satisfaction and market share measurement is a better form of measuring product desirability

while Defect Density is an excellent form of measuring software Quality. Kan gives an excellent

exposition of over 35 software metrics for measuring many aspects of software Quality, including

customer satisfaction measurement, while reinforcing the strategic nature of Defect Density metrics for

measuring software quality associated with SPI.

Return-on-Investment

According to Lim (1998), “Return-on-Investment metrics are collected for the purpose of measuring the

magnitude of the benefits relative to the costs.” According to Herbsleb, Carleton, Rozum, Siegel, and

Zubrow (1994) and Garrison and Noreen (1997), there seems to be wide disparity in the definition,

meaning, application, and usefulness of Return-on-Investment (ROI). Herbsleb, Carleton, Rozum, Siegel,

and Zubrow claim that Business Value (value returned on each dollar invested) is actually measured, and

not ROI itself. Garrison and Noreen define ROI as Margin (Net Operating Income/Sales) multiplied by

Turnover (Sales/Average Operating Assets)—or rather a ratio of sales (or revenue) to operating expenses

(or process costs). All three definitions have more commonality than differences, primarily, a ratio of

revenue to expenses. If the revenue of employing a particular SPI method exceeds the cost of

implementing the SPI method, then a positive ROI has been yielded. For example, if a 10,000 SLOC

software product requires 83.84 person years (174,378 staff hours) using conventional methods, but only

400 person hours of Effort using the Personal Software Process (PSP), then PSP’s ROI is determined to be

(174, 378 – 400) divided by 400, or a whopping 435:1. ROI is not all that difficult, convoluted, or

meaningless as Herbsleb, Carleton, Rozum, Siegel, and Zubrow, and Garrison and Noreen seem to assert.

The next question becomes “at what point will the ROI be achieved?”

Break Even Hours. According to Garrison and Noreen (1997), break even point is defined as “the level of

activity at which an organization neither earns a profit nor incurs a loss.” Reinertsen (1997) similarly

defines break even point as “the time from the first dollar spent until the development investment has

been recovered.” Garrison and Noreen present the equation of total fixed expenses divided by selling

price per unit, less variable expenses per unit, resulting in the number of break even units. So, the break

even point is when the total sales intersect the total expenses, according to Garrison and Noreen.

Garrison’s and Noreen’s rendition of break even point is time-independent. In other words, Garrison’s and

Noreen’s formulas indicate at what sales volume a break even point will be achieved, but make no

assertion as to what point in “time” the sales volume will be achieved (since sales volume is determined

by unpredictable market forces). However, for the purposes of this study, the break even point will be

referred to as Break Even Hours and fully tied to time. Break Even Hours in software development may

be computed a number of ways. Break Even Hours may be computed as the total cost of implementing a

new SPI method. Break even point analysis in this study yielded some interesting results. Because, SPI

method investment costs in Training Hours and Training Costs represent such small fractions of total life

cycle costs, and sometimes large gains in Productivity, SPI break even points are surprisingly measured in

hours or programming a few SLOC. On the other hand, break even analysis in traditional manufacturing

industries usually involves the cost-justification of large capital investments in real estate, building

construction, and equipment modernization (Garrison and Noreen, 1997). Therefore, process

improvement in traditional industries generally involves capital investments measured in thousands and

even millions of dollars. Break even analysis is imperative when large economies of scale are traditionally

involved. However, SPI methods are typically measured in dozens and sometimes a few hundred hours,

compared to total life cycle costs measuring in the hundreds of thousands of hours. So for a good SPI

A DACS State-Of-The-Art Report 121

method, break even points must be searched for in micro-scales involving hours, versus months, years,

and even decades. SPI method break even analysis surprisingly challenges many conventional myths,

holding that SPI takes years and decades to yield beneficial results.

Alternative Strategies

Eight SPI alternatives were chosen with which to evaluate, assess, and analyze cost and benefit data, the

Personal Software Process (PSP), Clean Room Methodology, Software Reuse, Defect Prevention Process,

Software Inspection Process, Software Test Process, Capability Maturity Model, and ISO 9000

(see Table 78).

Table 78: Alternatives for Evaluating and Benefits

Alternative Class Type Typically Reported Data

Personal Software Process Vertical Life Cycle Product Appraisal Cost, Productivity, Quality

Clean Room Methodology Vertical Life Cycle Formal Method Cost, Quality, R01

Software Reuse Vertical Process Design Method Cost, Productivity, Quality

Defect Prevention Process Vertical Process Preventative Cost, Quality, R01

Software Inspection Process Vertical Process Product Appraisal Cost, Productivity, Quality, R01

Software Test Process Vertical Process Product Appraisal Cost, Quality

Capability Maturity Model Indefinite SPI Model Cycle Time, Productivity, Quality

ISO 9000 Indefinite Quality Standard Cost, Productivity, Quality

Six of the SPI alternatives are vertical or prescriptive SPI methods offering relatively concise step-by-step

guidance, Personal Software Process (PSP), Clean Room Methodology, Software Reuse, Defect

Prevention Process, Software Inspection Process, and Software Test Process. Two of the SPI alternatives

are indefinite or descriptive SPI methods that offer high-level strategic and non-prescriptive guidance,

Capability Maturity Model (CMM) and ISO 9000. Three of the SPI alternatives are vertical life cycle

methods offering complete, end-to-end processes or methodologies for building software products,

Personal Software Process (PSP), Clean Room Methodology, and Software Reuse. Three of the SPI

alternatives are verfical process methods offering only partial software life cycle support (usually product

appraisal or validation), Defect Prevention Process, Software Inspection Process, and Software Test

Process. All eight of the SPI alternatives were chosen for a number of reasons, maturity, completeness,

acceptability, and most especially an abundance of quantitative cost and benefit data. However, it wasn’t

just the availability of abundant cost and benefit data that drove their selection, but also the magnitude of

the cost and benefit data (e.g., low implementation cost and high quality benefit). The reason that the

Capability Maturity Model (CMM) and ISO 9000 were chosen is because one is a de facto international

standard and the other a certified international standard for SPI and SPI-related activity (e.g., software

quality management). The Literature Survey proved instrumental in the identification and selection of

these eight SPI alternatives for cost and benefit analyses, particularly in the case of the Clean Room

Methodology and Software Reuse, because of their reportedly impressive costs and benefits. The

Literature Survey also surfaced other SPI alternatives, but failed to justify their continued analyses

because of the lack of reported cost and benefit data, most notably, Orthogonal Defect Classification

Using Cost Benefit Analysis to Develop SPI Strategies122

(ODC), Product Line Management (PLM), and Software Process Improvement and Capability

dEtermination (SPICE). Ironically, each of the eight SPI alternatives are principally aimed at improving

quality, and may rightly be classified as software quality methodologies, with the one possible exception

of Software Reuse, which is principally a design or a compositional method. Orthogonal Defect

Classification (ODC) is a very promising software quality methodology that should not be overlooked in

future analyses, nor should Product Line Management (PLM), which is a software design management

methodology. It is reasonably safe to assert that no other SPI method exists with reported costs and

benefits as impressive as the ones selected and examined here. While, broad and impressive studies do

exist (McConnell, 1996), very little cost and benefit data is available to justify them.

Personal Software Process (PSP)

The PSP is a relatively new software development life cycle, and software quality methodology

(Humphrey, 1995). The PSP consists of five main software life cycle phases, Planning, High-Level

Design, High-Level Design Review, Development, and Postmortem. The PSP is characterized by

deliberate project planning and management, quantitative resource estimation and tracking, quality

planning and management, highly structured individual reviews of software work products, and frequent

software process and product measurements. Johnson and Disney (1998) report that the PSP requires at

least “12 separate paper forms, including a project plan summary, time recording log, process

improvement proposal, size estimation template, time estimation template, object categories worksheet,

test report template, task planning template, schedule planning template, design checklist, and code

checklist.” Johnson and Disney go on to state that a single PSP project results in 500 individual software

measurements, and that a small group of PSP projects easily results in tens of thousands of software

measurements. The PSP is a highly prescriptive, step-by-step, measurement-intensive software process for

developing software with the explicit goal of improving software process performance, achieving SPI,

and resulting in measurably high quality software products. The PSP has emerged in an age and backdrop

of qualitative, ambiguous, and highly undefined software development standards, life cycles, processes,

and methodologies. The PSP is small, efficient, tangibly examinable, and yields an abundance of data for

SPI research and analysis. Despite the newness of the PSP, and its popular but incorrect reputation as an

academic classroom software methodology, the PSP has yielded a phenomenally large amount of

examinable data for research and analysis. And, surprisingly still, despite the PSP’s growing reputation as

an overly bureaucratic software methodology (Johnson and Disney, 1998), the PSP is the smallest and

most efficient SPI method ever recorded, yielding the highest recorded ROI and productivity for any SPI

method known to the industry. Since the PSP was primarily conceived as a SPI method, the PSP is very

inexpensive to operate, the PSP results in measurably high quality and productivity, and the PSP produces

an abundance of measurement data, the PSP becomes a natural candidate for analysis and comparison in

this study. Ironically, despite the PSP’s newness, there was more PSP data available for examination and

analysis than from any other SPI method examined by this study.

Clean Room Methodology

The Clean Room Methodology, like the PSP, is a software development life cycle and software quality

methodology (Pressman, 1997; Kaplan, Clark, and Tang, 1995). Clean Room consists of seven main

software life cycle phases, Function Specification, Usage Specification, Incremental Development Plan,

Formal Design and Correctness Specification, Random Test Case Generation, Statistical Testing, and

Reliability Certification Model, according to Kaplan, Clark, and Tang. Another variation presented by

Kaplan, Clark, and Tang, defines Clean Room software life cycle phases as, Define Box Structures,

Define Stimuli and Responses, Define State Boxes, Define Clear Boxes, Plan Statistical Reliability

A DACS State-Of-The-Art Report 123

Certification, Define Usage Specification, Create Incremental Development Plan, and Develop Verifiable

Designs. Pressman defines Clean Room as an eight phase software life cycle consisting of, Requirements

Gathering, Statistical Test Planning, Box Structure Specification, Formal Design, Correctness

Verification, Code Generation, Inspection, and Verification, Statistical Usage Testing, and Certification.

Clean Room is characterized by rigorous requirements analysis, incremental development, formal

specification and design, deliberate test planning, formal verification, rigorous testing, and testing-based

reliability growth modeling. Clean Room is also somewhat prescriptive, with the explicit goal of

improving software quality and resulting in measurably high quality software products. Unlike the PSP,

however, Clean Room wasn’t targeted at SPI and places little emphasis on process definition,

performance, and measurement. The bottom line is that Clean Room is a formal methods-based

methodology making use of basic mathematical proofs and verification. Clean Room has the explicit goal

of reducing the number of software defects committed, reducing reliance on the Software Inspection

Process and Testing, and measurably increasing software quality levels beyond those achievable by the

Software Inspection Process. Clean Room was chosen because of an abundance of software quality

measurement data available as a result of using this methodology. Clean Room was also chosen for

examination because of a recent study of this methodology by McGibbon (1996), exhibiting the costs and

benefits of using Clean Room, and comparing it to other candidate SPI methods chosen for examination

in this study, most notably, the Software Inspection Process and Software Reuse. Ironically, other than

McGibbon’s study, very little is known about the mechanics of Clean Room, despite the existence of

several books devoted exclusively to Clean Room. In addition, these books tend to vaguely define Clean

Room, don’t seem to provide a coherent project planning and management framework, such as that

explicitly provided by the PSP, and provide very little cost and benefit data, being woefully short of

reported Clean Room measurements. Perhaps, that’s because Clean Room is more of a technical, versus

management, based methodology that relies on introducing the use of basic formal specification and

verification techniques, and a loosely associated post-process measurement framework only reporting one

measurement, software quality (in terms of Defect Density). Clean Room suffers from an unshakable

reputation as being overly difficult, because it employs formal methods, and vaguely applicable to modern

information technologies and application domains (particularly business, database, and data warehousing

domains). In addition to the high cost of implementation and perception as being overly difficult to apply,

Clean Room offers little evidence that it results in quality levels beyond those of much maligned product

appraisal techniques, such as the Software Inspection Process. However, one surprising element of Clean

Room revealed by McGibbon, was that Clean Room (as a formal method), results in smaller software

source code sizes. Smaller software sizes naturally imply fewer opportunities to commit software defects,

and subsequently, longer-term efficiencies in software maintenance productivity. As mentioned before,

this study views McGibbon’s analysis as the Rosetta stone or key to unlocking the secrets of Clean Room

for examination and comparative analysis as a candidate SPI method.

Software Reuse

According to Poulin (1997), Software Reuse is defined as “the use of existing components of source code

to develop a new software program, or application.” Lim (1998) states that, “reuse is the use of existing

assets in the development of other software with the goal of improving productivity, quality, and other

factors (e.g., usability).” Both, Poulin and Lim explain that Software Reuse exploits an allegedly simple

axiom, build and pay for software source code once, and reuse it many times. Software Reuse attempts to

do for the software industry what the industrial revolution, interchangeable parts, and integrated circuits

have done for 20th century manufacturing and even the more recent phenomenon of the high technology

electronics industry. The fundamental notion behind Software Reuse is to reduce Cycle Time, reduce

Using Cost Benefit Analysis to Develop SPI Strategies124

Effort, increase Productivity, increase Return on Investment, increase Quality, and enable predictable

software process performance by building and validating software source code once, and reusing it many

times (with much greater ease). Unfortunately, Software Reuse is just that, a notion. Software Reuse is not

characterized by a precisely defined software life cycle or process, such as those exhibited by the PSP,

Clean Room, Software Inspection Process, or even Testing. According to Lim, Software Reuse consists of

four main phases, Managing the Reuse Infrastructure, Producing Reusable Assets, Brokering Reusable

Assets, and Consuming Reusable Assets (see Table 11). Software Reuse consists of five main phases,

Characterize, Collect Data, Analyze Data, Taxonomy, and Evaluate (see Table 10), according to Schafer,

Prieto-diaz, and Matsumoto (1994). Despite Software Reuse’s lack of a standard life cycle or

methodology, Software Reuse is still considered a prescriptive SPI method, because it is characterized by

a pointedly specific tactical element, “reuse software source code.” Even more so than Clean Room,

Software Reuse places little emphasis on process definition, performance, and measurement. Software

Reuse was also chosen because of an abundance of economic analyses, Productivity, Quality, Cycle Time,

and other software measurement data as a result of using Software Reuse. Like Clean Room, Software

Reuse tends to be more of a technical, versus management, based methodology. Software Reuse had a

tremendous amount of momentum and popularity throughout the 1980s and early 1990s, riding the coat-

tails of the object oriented analysis, design, and programming movement, manifesting themselves in third

generation programming languages such as Ada and C++. Software Reuse was even considered by a few

management scientists, most notably Cusumano (1991), Poulin, and Lim, to be the single most strategic

SPI method. However, Software Reuse seems to have fallen victim to a few insurmountable maladies, it’s

reputation as a technical approach, lack of compelling economic analyses, lack of firmly defined

processes, inability to motivate the actual reuse of software source code, and the sheer difficulty of

managing third generation computer programming languages. And, once again, this study views Lim’s,

Poulin’s, and McGibbon’s books, studies, and economic analyses as the Rosetta stones to deciphering the

costs and benefits of Software Reuse. And, it is their abundant economic analyses that led to the selection

of Software Reuse for comparative analyses against other SPI methods, as discovered by the Literature

Survey.

Defect Prevention Process

The Defect Prevention Process “is the process of improving quality and productivity by preventing the

injection of defects into a product,” according to Mays, Jones, Holloway, and Studinski (1990). According

to Humphrey (1989), “the fundamental objective of software defect prevention is to make sure that errors,

once identified and addressed, do not occur again.” Gilb and Graham (1993) state that “the Defect

Prevention Process is a set of practices that are integrated with the development process to reduce the

number of errors developers actually make.” Paulk, Weber, Curtis, and Chrissis (1996) of the Software

Engineering Institute (SEI) formally assert that “the purpose of Defect Prevention is to identify the cause

of defects and prevent them from recurring.” Latino and Latino (1999) define Root Cause Failure

Analysis (RCFA), which is similar to Defect Prevention, as “a technique for uncovering the cause of a

failure by deductive reasoning down to the physical and human root(s), and then using inductive

reasoning to uncover the much broader latent or organizational root(s).” Like Software Reuse, Defect

Prevention is not characterized by a standard software life cycle or process, such as those exhibited by the

PSP, Clean Room, Software Inspection Process, and Testing. However, the Defect Prevention Process

defined by Jones (1985) serves as a commonly accepted de facto standard, primarily consisting of five

sub-processes, Stage Kickoff Meeting, Causal Analysis Meeting, Action Database, Action Team, and

Repository. Defect Prevention is characterized by software defect data collection, defect classification,

defect tracking, root-cause analysis, implementation of preventative actions, and most notably in-process

A DACS State-Of-The-Art Report 125

education of commonly committed software defects. Defect Prevention is highly prescriptive, with the

explicit goal of increasing software quality and reliability, and directly results in such. Defect Prevention

is a classical SPI method that like Clean Room, has the explicit goal of reducing the number of software

defects committed, reducing reliance on the Software Inspection Process and Testing. Defect Prevention

relies heavily on rigorously collected and highly structured software defect data that is collected by less

than 95% of all software organizations (Software Engineering Institute, 1999), and thus is the weakness of

this approach. Conventional wisdom still holds that software defect data isn’t representative of software

quality in any way, shape, or form, and is commonly and intuitively believed not to be a strategic part of

software development and SPI (Lauesen and Younessi, 1998; Binder, 1997). If software defect data

collection is meaningless, as popularly held (Lauesen and Younessi; Binder), then the strategic

justification for the PSP, Clean Room, Defect Prevention, Software Inspection Process, and Testing has

been removed completely. It is the fundamental premise of this study that software defect data is the

cornerstone of the software engineering and SPI disciplines (Kan, 1995; Smith, 1993), thus elevating the

importance of Defect Prevention to that of a critically strategic SPI method. These are the reasons that

Defect Prevention was chosen for examination and comparative analyses. Because, defect data is strategic

(Kan; Smith), Defect Prevention is strategic (Mays, Jones, Holloway, and Studinski; Kan; Humphrey;

Gilb; Latino and Latino), Defect Prevention is well defined (Mays, Jones, Holloway, and Studinski), and

there is a good amount of data available (Mays, Jones, Holloway, and Studinski; Gilb; Latino and Latino).

Software Inspection Process

The Software Inspection Process is an early, in-process product appraisal activity, and is an instrumental

component of contemporary software quality methodologies (Fagan, 1976). Inspections consist of six

main sub-processes, Planning, Overview, Preparation, Inspection, Rework, and Followup. Inspections are

characterized by highly structured team reviews by qualified peers, software defect identification, and

software quality estimation based on discovered software defects. More importantly, Inspections are

characterized by concisely defined, repeatable, and measurable processes, ushering in blockbuster ideas

like the Software Engineering Institute’s (SEI’s) Capability Maturity Model for Software (Radice,

Harding, Munnis, and Phillips, 1985; Radice, Roth, O’Hara, Jr., and Ciarfella, 1985). Inspections may be

considered the cornerstone of modern quantitative software quality engineering methodologies (Kan,

1995; Humphrey, 1989, 1995, and 2000), such as Defect Prevention, CMM, software life cycle reliability

modeling, software quality modeling, PSP, and the Team Software Process (TSP). Inspections are also

characterized by software process metrics and measurements, and may yield more than 30 process and

product software measurements per Inspection. A small product of 10,000 source lines of code may

require 42 individual inspections, and may result in up to 1,260 individual software measurements. One

organization performed 5,000 Inspections in three years, potentially yielding 150,000 individual software

measurements (Weller, 1993). Like the PSP, or should it be said that the PSP is like Inspection, Inspection

is a highly prescriptive, step-by-step, measurement-intensive software process for validating software

with the explicit goal of improving software process performance, achieving SPI, and resulting in

measurably high quality software products. While Inspections are even better defined and prescriptive

than the PSP, Inspections only cover one aspect of software development, validation. Whereas, the PSP is

an entire software life cycle that contains its own validation technique (Humphrey, 2000), though the TSP

(Humphrey), a group form of the PSP, does use Inspections and not the individual validation review

employed by the PSP (Humphrey). Inspections were selected for examination and comparative analysis

because of the abundance of literature on Inspections, in both journals and textbooks, the abundance of

reported and validated costs and benefits, and ability to develop ROI models and analyses based on

Inspections, because of its precise characterization and measurability. In fact, several key studies

Using Cost Benefit Analysis to Develop SPI Strategies126

motivated the selection of Inspections for comparative analyses, McGibbon (1996), Grady (1997), Weller

(1993), Russell (1989), and Rico (1996a and 1996b). McGibbon performed comparative analyses of

Inspections, Clean Room, and Software Reuse, showing that Inspections exhibit an ROI beyond that of

any known SPI method to him. Inspections were a cornerstone SPI method to Grady’s landmark study and

comparison of SPI methods, reporting that the use of Inspections have saved Hewlett Packard over $400

million. Weller and Russell demonstrated that Inspections are extremely quantitative and effective, each

responsible for helping change the image of Inspections from a qualitative Walkthrough-style technique to

its real quantitative characterization. Rico (1993, 1996, and 1999) showed how simple it is to examine the

costs and benefits of Inspections, because of their measurability. Still, Inspections, like Clean Room and

the PSP, have an unshakable reputation as being overly bureaucratic, too expensive, and too difficult to

learn, with only marginal benefits. Russell, Weller, McGibbon, Grady, Humphrey, and Rico begin to show

for the first time in three decades that these misperceptions are exactly that, untrue.

Software Test Process

The Software Test Process is a late, post-process product appraisal activity, that is commonly

misperceived to be software quality assurance, verification and validation, and independent verification

and validation (Rico, 1999). According to IEEE (Std 1012-1986; Std 1059-1993), the Software Test

Process consists of eight main sub-processes, Test Plan Generation, Test Design Generation, Test Case

Generation, Test Procedure Generation, Component Testing, Integration Testing, System Testing, and

Acceptance Testing. According to IEEE (J-Std 016-1995), the Software Test process consists of seven

main sub-processes, Test Planning, Test Environment Preparation, Unit Testing, Unit Integration Testing,

Item Qualification Testing, Item Integration Testing, and System Qualification Testing. According to IEEE

(Std 12207.0-1996), the Software Test process consists of six main sub-processes, Qualification Test

Planning, Integration Test Planning, Unit Test Planning, Unit Testing, Integration Testing, and

Qualification Testing. Testing is characterized by dynamic execution of software upon code and

implementation based on predefined test procedures, usually by an independent test group other than the

original programmer. According to Pressman (1997) and Sommerville (1997), Testing is also

characterized by a variety of dynamic white box (e.g., basis path and control structure) and black box

(e.g., specification, interface, and operational) Testing techniques. Blackburn’s (1998) Testing approach is

based on the theory that among the myriad of Testing techniques, boundary analysis is the most fruitful

area for finding defects, and goes on to assert a direct correlation between the absence of boundary

analysis defects and the overall absence of software product defects. Testing can be prescriptive, with a

somewhat misguided, but honorable, goal of improving software quality. Testing is somewhat misguided

for several important reasons, Testing doesn’t involve estimating defect populations, little time is devoted

to Testing, and Testing is usually conducted in an ad hoc and unstructured fashion, which all contribute to

passing an inordinately large latent defect population right into customer hands (Rico, 1999). However,

there seems to be some controversy as to the strategic importance of Testing, as Lauesen and Younessi

(1998) claim that 55% of defects can only be found by Testing, while Weller (1993) and Kan (1995) assert

that better than 98% of defects can be found before Testing begins. And, of course, Lauesen and Younessi

go on to assert the popular notion that software defect levels don’t represent ultimate customer

requirements, while Kan firmly shows a strong correlation between defect levels and customer

satisfaction. Testing was chosen because there is an abundance of literature exhibiting the costs and

benefits of Testing, primarily when Testing is being compared to the Software Inspection Process. Testing

was also chosen because interest in Testing-based process improvement is growing at a rapid pace

(Burnstein, Suwannasart, and Carlson, 1996a and 1996b; Burnstein, Homyen, Grom, and Carlson, 1998).

Thus, it now becomes imperative to examine various SPI methods, quantify their individual costs and

benefits, and direct SPI resources to important areas yielding optimal ROI. Ironically, highly structured

A DACS State-Of-The-Art Report 127

Testing is practiced by very few organizations, perhaps less than 95% (Software Engineering Institute,

1999). So, perhaps, Testing-based process improvement isn’t such a bad strategy, given that there is a

substantial ROI for good Testing (as long as it is realized that there are superior SPI methods to Testing).

Capability Maturity Model for Software (CMM)

The CMM is a software process improvement framework or reference model that emphasizes software

quality (Paulk, Weber, Curtis, and Chrissis, 1995). The CMM is a framework of SPI criteria or

requirements organized by the following structural decomposition, Maturity Levels, Key Process Areas,

Common Features, and Key Practices (Paulk, Weber, Curtis, and Chrissis). There are five Maturity

Levels, Initial, Repeatable, Defined, Managed, and Optimizing (see Table 4 and Figure 24). Key Process

Areas have Goals associated with them. There are 18 Key Process Areas divided among the Maturity

Levels, zero for Initial, six for Repeatable, seven for Defined, two for Managed, and three for Optimizing

(see Table 4 and Figure 24). There are five Common Features associated with each of the 18 Key Process

Areas, Commitment to Perform, Ability to Perform, Activities Performed, Measurement and Analysis, and

Verifying Implementation. And, there are approximately 316 individual Key Practices or SPI requirements

divided among the 90 Common Features. The CMM is characterized by best practices for software

development management, with a focus on software quality management. That is, the CMM identifies

high-priority software management best practices, and their associated requirements. Thus, a software

producing organization that follows the best practices prescribed by the CMM, and meets their

requirements, is considered to have good software management practices. And, software-producing

organizations that don’t meet the CMM’s requirements are considered to have poor software management

practices. The CMM is a series of five stages or Maturity Levels of software management sophistication,

Maturity Level One—Initial being worst and Maturity Level Five—Optimizing being considered best. At

the first stage or Maturity Level, software management is asserted to be very unsophisticated or

“immature” in CMM terminology. At the last or highest stage or Maturity Level, software management is

asserted to be very sophisticated or “mature” in CMM terminology. The first or Initial Level has no SPI

requirements and characterizes poor software management practices. The second or Repeatable Level has

six major best practices largely centered on software project planning and management. The third or

Defined Level has seven major best practices centered on organizational SPI management, process

definition, and introduces some software quality management practices. The fourth or Managed Level

only has two best practices emphasizing the use of software metrics and measurement to manage software

development, as well as an emphasis on software quality metrics and measurement. The fifth and highest

Optimizing Level focuses on Defect Prevention, the use of product technologies for process improvement,

and carefully managed process improvement. In essence, the CMM requires the definition of software

project management practices, the definition of organizational software development practices, the

measurement of organization process performance, and finally measurement-intensive process

improvement. This is where the controversy enters the picture, while the CMM is reported to be

prescriptive for SPI, the CMM is not prescriptive for software project management, software

development, or software measurement. The CMM merely identifies or names some important software

processes, vaguely describes their characteristics, and even asserts a priority and order of SPI focus (e.g.,

Maturity Levels). Common issues are that the CMM doesn’t identify all important software processes,

doesn’t group, prioritize, and sequence SPI requirements appropriately, doesn’t provide step-by-step

prescriptive process definitions, and may actually impede SPI by deferring software process and quality

measurement for several years. Ironically, many commonly misperceive the CMM’s 316 Key Practices to

be the concise prescriptive requirements for software management and engineering. Fulfilling the CMM’s

316 Key Practices will merely make an organization CMM-compliant. However, the CMM’s 316 Key

Practices neither fully describe functional software processes nor describe a best-in-class software life

Using Cost Benefit Analysis to Develop SPI Strategies128

cycle like the PSP, TSP, or even the Clean Room Methodology do. In other words, the CMM attempts to

describe the “essence” of best practices, but doesn’t contain the detail necessary to define and use the

recommended best-practices by the CMM (a common misconception). One more time for emphasis, the

CMM is not a software engineering life cycle standard like ISO/IEC 12207, EIA/IEEE 12207, or J-STD-

016. Nevertheless, the CMM is the de facto, international SPI method and model, and there is an

abundance of software measurement data associated with its use, particularly in the works of Herbsleb,

Carleton, Rozum, Siegel, and Zubrow (1994), Diaz and Sligo (1997), and Haskell, Decker, and McGarry

(1997). While these studies have exhibited some rather impressive costs and benefits associated with

using the CMM, it is unclear how many additional resources and techniques were required to meet the

CMM’s requirements. And, whether actually meeting the CMM’s requirements may have actually been

due to using other SPI methods such as the Software Inspection Process and the use of software defect

density metrics, and attributing these successful outcomes to use of the CMM.

ISO 9000

According to Kan (1995), “ISO 9000, a set of standards and guidelines for a quality assurance

management system, represent another body of quality standards.” According to NSF-ISR (1999), an

international quality consulting firm, “ISO 9000 Standards were created to promote consistent quality

practices across international borders and to facilitate the international exchange of goods and services.”

NSF-ISR goes on to assert that “meeting the stringent standards of ISO 9000 gives a company confidence

in its quality management and assurance systems.” According the American Society for Quality Control

(1999), “The ISO 9000 series is a set of five individual, but related, international standards on quality

management and quality assurance.” The American Society for Quality Control goes on to say ISO 9000

standards “were developed to effectively document the quality system elements to be implemented in

order to maintain an efficient quality system in your company.” In short, ISO 9000 is a set of international

standards for organizational quality assurance (QA) standards, systems, processes, practices, and

procedures. ISO 9000-3, Quality Management and Quality Assurance Standards—Part 3: Guidelines for

the Application of ISO 9001 to the Development, Supply, and Maintenance of Software, specifies 20

broad classes of requirements or elements. The first 10 ISO 9000-3 quality system elements are,

Management Responsibility, Quality System, Contract Review, Design Control, Document Control,

Purchasing, Purchaser-Supplied Product, Product Identification and Traceability, Process Control, and

Inspection and Testing. The last 10 ISO 9000-3 quality system elements are, Inspection, Measuring, and

Test Equipment, Inspection and Test Status, Control of Nonconforming Product, Corrective Action,

Handling, Storage, Packaging, and Delivery, Quality Records, Internal Quality Audits, Training,

Servicing, and Statistical Techniques. ISO 9000 is characterized by the creation, existence, and auditing of

a “quality manual” that “aids in implementing your quality system; communicates policy, procedures and

requirements; outlines goals and structures of the quality system and ensures compliance,” according to

Johnson (1999), an international quality consulting firm. ISO 9000 describes the essence of an

organizational quality management system at the highest levels, much like the CMM, and is thus highly

descriptive, like the CMM, and not very prescriptive at all. While, prescriptive SPI strategies like the PSP,

TSP, Clean Room, and Inspections require actual conformance to step-by-step software quality

methodology, there seems to be some question as to the operational nature of an ISO 9000-compliant

“quality manual” or quality management system. In fact, Johnson claims that it can help organizations

become ISO 9000 registered in as little as three to six months. Johnson sends in a team of consultants to

actually write an ISO 9000-compliant “quality manual” for its clients. ISO 9000 was chosen for

examination and comparative analyses as a SPI method, because as Kaplan, Clark, and Tang (1995) state,

“the whole world was rushing to adopt ISO 9000 as a quality standard.” Studies by Kaplan, Clark, and

Tang and Haskell, Decker, and McGarry (1997) were instrumental keys to unlocking the costs and

A DACS State-Of-The-Art Report 129

benefits of ISO 9000 as a SPI method. Ironically, many authoritative surveys have been conducted

measuring international organizational “perceptions” of using ISO 9000-compliant quality management

systems. According to Arditti (1999), Lloyd Register reports survey respondent perceptions such as,

improved management—86%, better customer service—73%, improved efficiency and productivity—

69%, reduced waste—53%, improved staff motivation and reduced staff turnover—50%, and reduced

costs—40%. Irwin Publishing reports respondent perceptions such as, higher quality—83%, competitive

advantage—69%, less customer quality audits—50%, and increased customer demand—30%, according

to Arditti. According to Garver (1999), Bradley T. Gale reports survey respondent perceptions such as,

Improved Management Control—83%, Improved Customer Satisfaction—82%, Motivated Workforce—

61%, Increased Opportunity To Win Work—62%, Increased Productivity/Efficiency—60%, Reduced

Waste—60%, More Effective Marketing—52%, Reduced Costs—50%, and Increased Market Share—

49%. While these statistics certainly sound great, these statistics do not reflect “actual” benefits, but

merely “perceived” ones. It’s completely unclear how much, if any, actual benefits arise from using ISO

9000-compliant quality management systems. However, as mentioned before Kaplan, Clark, and Tang and

Haskell, Decker, and McGarry, among others, have provided enough quantitative cost and benefit

information to include the use of ISO 9000 as a SPI method, given its tremendous popularity, and

perceived ubiquity. It is important to note that very few firms actually employ ISO 9000, at least

domestically. Some large U.S. states have as few as three ISO 9000-registered firms, which could be

considered statistically insignificant.

Defect Removal Model

The defect removal model is a tool for managing software quality as software products are developed, by

evaluating phase-by-phase software defect removal efficiency (Kan, 1995). The defect removal model has

historically been used to model software process, software project management, and software verification

and validation effectiveness (Sulack, Lindner, and Dietz, 1989; Humphrey, 1989 and 1995; Gilb, 1993;

Kan, 1995; McGibbon, 1996; Ferguson, Humphrey, Khajenoori, Macke, and Matvya, 1997; Rico, 1999).

Software process improvement (SPI) costs and benefits, particularly Return-On-Investment (ROI), are

also modeled by the defect removal model (Gilb, 1993; Grady, 1994 and 1997; McGibbon, 1996). The

defect removal model is similarly represented by the dynamics of the Rayleigh life cycle reliability model

shown in Figure 28. The notion being that software defects should be eliminated early in software life

cycles, and that the economics of late defect elimination are cost-prohibitive.

According to Kan, “the phase-based defect removal model summarizes the interrelations among three

metrics—defect injection, defect removal, and effectiveness.” Or, arithmetically speaking, “defects at the

exit of a development setup = defects escaped from previous setup + defects injected in current setup –

defects removed in current setup.” Kan cautiously and conservatively warns that the defect removal

model is a good tool for software quality management, not software reliability modeling and estimation.

Kan goes on to say that parametric models such as exponential models and reliability growth models (e.g.,

Jelinski-Moranda, Littlewood, Goel-Okumoto, Musa-Okumoto, and the Delayed S and Inflection S

Models) are best for software reliability estimation, not the defect removal model.

While, Kan favors the use of the lesser known, but deadly accurate Rayleigh model for software quality

management, Grady (1994 and 1997), Humphrey (1995), and McGibbon (1996) have established strong

empirical foundations for using defect removal models for evaluating the costs and benefits of SPI, as

well as ROI. Rico’s (1999) basic defect removal model, comparing the costs and benefits of the Personal

Software Process (PSP), Software Inspection Process, and Software Test Process, was expanded upon to

establish the basic framework of the methodology for this entire study.

Using Cost Benefit Analysis to Develop SPI Strategies130

In addition to establishing the basic methodology for this study, the defect removal model was used to

design and construct an empirically valid ROI model, as well as the empirical framework for evaluating

the costs and benefits of the targeted SPI methods. As mentioned earlier, this study will evaluate the costs

and benefits of the PSP, Clean Room, Reuse, Prevention, Inspection, Test, CMM, and ISO 9000. So, if a

particular ROI or break even point is asserted for the PSP, Inspection, or Test, in which these will be

critically strategic comparative factors, then a strong empirical foundation has been established to validate

these assertions.

Figure 28. Defect Removal Model Theory

Table 79: Humphrey’s Defect Removal Model

High Level Detailed Level Code Unit Test Integration System Test Usage

Defects Design Design Test

Residual 0 4 13 34 19 139 9

Injected 10 21 63 5 2 2 3

Removed 6 12 42 20 8 6 12

Remaining 4 13 34 19 13 9 0

Injection Rate 10 21 63 5 2 2 3

Removal Efficiency 60% 48% 55% 51% 38% 40% 100%

Cumulative Efficiency 60% 58% 64% 81% 87% 91% 100%

Inspection Defects 6 18 60 - - - -

Development Defects 6 18 60 80 8 94 -

Inspection Efficiency - - - - - 63.8% -

A DACS State-Of-The-Art Report 131

Humphrey

One of the first defect removal models was presented by Humphrey (1989) to explain defect removal

efficiency, is his seminal book on the SEI’s CMM (see Table 79). Humphrey presents seven software life

cycle phases or stages, High Level Design, Detailed Level Design, Code, Unit Test, Integration Test,

System Test, and Usage, for software quality analysis on a stage-by-stage basis. Humphrey also used 10

software measurements for in-process software quality analysis. Residual defects are the estimated

starting defects at the beginning of each stage. Injected is the number of new defects committed in each

stage. Removed is the number of defects eliminated in each stage. Remaining is injected less removed

defects. Injected Rate is the same as Injected defects in this example. Removal Efficiency is a ratio of

Removed to Residual and Injected defects. Cumulative Efficiency is a ratio of all Removed to all Residual

and Injected defects. Inspection Defects are software defects found by the Software Inspection Process.

Development Defects are software defects committed before product delivery. And Inspection Efficiency

is an estimate of the overall Software Inspection Process effectiveness, or ratio of software defects found

by Inspections to total estimated defects. This is a realistic model because it portrays modest Inspection

efficiencies, and stage-by-stage software defect injection.

Sulack

If Humphrey’s (1989) defect removal model was the first quantitative analyses of defect removal

efficiencies in strategic “what-if” terms, Sulack, Linder, and Dietz (1989) presented the first qualitative,

though holistic, defect removal model in tactical “how-to” terms (see Table 80). Actually, Sulack, Linder,

and Dietz show four defect removal models, three for existing software products, and one notional or

“future” defect removal model. Nine software life cycle stages or phases are shown for each defect

removal model, Product Objectives, Architecture, Specification, High-Level Design, Intercomponent

Interfaces, Low-Level Design, Code, Test Plan, and Test Cases. The first product, System/36, used

informal reviews for the first half of the life cycle and the Software Inspection Process for the second half.

The second product, System/38, extended Inspections into software design, and structured walkthroughs

into Architecture and Specification. A Future, or ideal, defect removal model would systematically

employ Inspections throughout the software life cycle, with an informal initial review. Instead, the third

product, AS/400, used Inspections throughout the software life cycle, on a phase-by-phase, product-by-

product basis, in order to identify software defects as early as possible. This strategy helped generate

$14B in revenue, win the Malcolm Baldrige National Quality Award, become ISO 9000 Registered, and

employ a world-class software quality management system.

Table 80: Sulak’s Defect Removal Model

Phase System/36 System/38 Future AS/400

Product Objectives Review Review Review Walkthrough

Architecture Review Walkthrough Inspection Inspection

Specification Review Walkthrough Inspection Inspection

High-Level Designs Review Inspection Inspection Inspection

Intercomponent Interfaces Review Inspection Inspection Inspection

Low-Level Designs Inspection Inspection Inspection Inspection

Code Inspection Inspection Inspection Inspection

Test Plan Inspection Inspection Inspection Inspection

Test Cases Inspection Inspection Inspection Inspection

Using Cost Benefit Analysis to Develop SPI Strategies132

Gilb

While, defect removal models by Humphrey (1989) and Sulack, Lindner, and Dietz (1989) were some of

the earliest works, depicting strategic and tactical models, Gilb (1993) was one of the first to attach the

costs and benefits to his defect removal model (see Table 81). Gilb’s model presents five notional stages

of software product evolution, System Construction, Testing Execution, Early Field Use, Later Field Use,

and Final Use. Gilb’s defect removal model also introduced seven basic software metrics, Where Defects

Found, Defects Found, Estimated Effectiveness, Cost to Fix, Cost with Inspection, Defects Found w/o

Inspection, and Cost w/o Inspection, being one the first models to introduce the notion of cost. Where

Defects Found identifies the activity that uncovered the software defect, Inspection, Test, or customer use.

Defects Found are the proportional number of software defects uncovered by the activity, Inspection, Test,

or customer use, and the phase in which they were found. Estimated Effectiveness is the percentage of

defects found by Inspection, Testing, or customer use for that phase. Cost to Fix is the dollars per defect

for the given phase and activity. Cost with Inspection is total dollars per phase and activity, with

Inspections used in the System Construction Phase. Defects Found w/o Inspection is the number of

software defects found per phase and activity without use of Inspections. Cost w/o Inspection is the cost

per phase and activity without use of Inspections. For a modest $600 investment in Inspections, $623,400

is saved according to Gilb.

Table 81: Gilb’s Defect Removal Model

System Testing Early Later

Life Cycle Phase Construction Execution Field Use Field Use Final Use

Where Defects Found Inspection Testing Use Use Use

Defects Found 60 24 10 4 2

Estimated Effectiveness 75% 71% 63% 61% 60%

Cost to Fix $10 $100 $1,000 $1,000 $1,000

Cost with Inspection $600 $3,000 $13,000 $17,000 $19,000

Defects Found W/O Inspection 0 60 48 10 2

Cost W/O Inspection $0 $6,000 $540,000 $64,000 $66,000

Table 82: Kan’s Defect Removal Model

(A) Defect

Escaped from (B) Defect Defect Defects at

Previous Phase Injection Subtotal Removal Removal Exit of Phase

Phase (per KSLOC) (per KSLOC) (A+B) Effectiveness (per KSLOC) (per KSLOC)

Requirements - 1.2 1.2 - - 1.2

High Level Design 1.2 8.6 9.8 74% 7.3 2.5

Low Level Design 2.5 9.4 11.9 61% 7.3 4.6

Code 4.6 15.4 20 55% 11 9

Unit Test 9 - 9 36% 3.2 5.8

Component Test 5.8 - 5.8 67% 3.9 1.9

System Test 1.9 - 1.9 58% 1.1 0.8

Field 0.8 - - - - -

A DACS State-Of-The-Art Report 133

Kan

The defect removal model by Kan (1995) is very similar to Humphrey’s (1989), only simplified and more

focused (see Table 82). In this model, Kan shows eight software development phases, Requirements, High

Level Design, Low Level Design, Code, Unit Test, Component Test, System Test, and Field. Kan also

introduces six software metrics to measure software quality, Defect Escaped from Previous Phase (per

KSLOC), Defect Injection (per KSLOC), Subtotal (A + B), Removal Effectiveness, Defect Removal (per

KSLOC), and Defects at Exit of Phase (per KSLOC). Defect Escaped from Previous Phase (per KSLOC)

is the number of software defects present before phases begin (normalized to thousands of source lines of

code—KSLOC). Defect Injection (per KSLOC) is the number of software defects created during a phase

(normalized to KSLOC). Subtotal (A + B) is the sum of software escaped and injected defects, that are

present during any given phase. Removal Effectiveness is the percentage of software defects eliminated

by Inspections or Test per phase. Defect Removal (per KSLOC) is the number of software defects

eliminated by Inspections or Test per phase (normalized to KSLOC). And, Defects at Exit of Phase (per

KSLOC) are the number of residual software defects present, or not eliminated by Inspections or Test per

phase (normalized to KSLOC).

Table 83: McGibbon’s Defect Removal Model (Part I)

Formal Informal

Phase Inspections Inspections

Design

% Defects lntroduced 35% 35%

Total Defects Introduced 98 Defects 98 Defects

% Defects Detected 65% 40%

Defects Detected 64 Defects 39 Defects

Rework Hours/Defect 2.5 Hours 2.5 Hours

Total Design Rework 159 Hours 98 Hours

Coding

% Defects Introduced 65% 65%

Total Defects Introduced 182 Defects 182 Defects

% Defects Detected 70% 35%

Defects Detected 151 Defects 84 Defects

Rework Hours/Defect 2.5 Hours 2.5 Hours

Total Coding Rework 378 Hours 211 Hours

Test

Defects Found in Test 51 Defects 114 Defects

Rework Hours/Defect 25 Hours 25 Hours

Total Test Rework 1,271 Hours 2,861 Hours

% of Defects Removed 95% 85%

Maintenance

Defects Left for Customer 14 Defects 42 Defects

Post Release Defects/KSLOC 0.35/KSLOC 1.05/KSLOC

Rework Hours/Defect 250 Hours 10,491 Hours

Total Maintenance Rework 3,497 Hours 3,497 Hours

Totals

Total Rework 5,306 Hours 13,660 Hours

Total Rework Costs $206,918 $532,752

Total Savings $325,834

Using Cost Benefit Analysis to Develop SPI Strategies134

McGibbon

Like Humprey’s (1989) and Kan’s (1995) defect removal models, McGibbon (1996) designed a detailed

model and attached costs like Gilb (1993), but upped the ante by comparing the costs and benefits of

Formal and Informal Inspections (see Table 83). McGibbon uses four major software life cycle phases,

Design, Coding, Test, and Maintenance, also introducing 23 individual software metrics for evaluating the

costs and benefits of defect removal efficiencies for Formal and Informal Inspections. % Defects

Introduced represents the proportion of software defects created during the Design and Coding phases.

Total Defects Introduced represents the number of software defects created during the Design and Coding

phases. % Defects Detected represent the proportion of software defects eliminated by Formal and

Informal Inspections during the Design and Coding phases. Defects Detected represent the number of

software defects eliminated by Formal and Informal Inspections during the Design and Coding phases.

Rework Hours/Defect are the effort required to eliminate each software defect by Formal and Informal

Inspections during the Design and Coding phases. Total Design Rework is the effort required to repair all

defects found by Formal and Informal Inspections during the Design and Coding phases. Defects Found

in Test are residual or remaining software defects escaping Formal and Informal Inspections into the Test

phase. Rework Hours/Defect are the effort to eliminate each software defect by dynamic analysis during

the Test phase. Total Test Rework is the effort required to repair all defects found by dynamic analysis

during the Test phase. % of Defects Removed are the proportion of software defects eliminated by Formal

and Informal Inspections, as well as dynamic analysis, during the Design, Coding, and Test phases.

Defects Left for Customer are the total number of software defects remaining in software products

delivered to customers, not found by Formal and Informal Inspections, or dynamic analysis, during the

Design, Coding, and Test phases. Post Release Defects/KSLOC are the number of Defects Left for

Customer normalized to thousands of source lines of code (KSLOC). Rework Hours/Defect are the effort

to eliminate each software defect during the Maintenance phase. Total Maintenance Rework is the effort

required to repair all defects during the Maintenance phase. Total Rework is the effort required to repair

all defects found during the Design, Coding, Test, and Maintenance phases. Total Rework Cost is Total

Rework in dollars. And, Total Savings are the benefit of using Formal Inspections over Informal

Inspections.

McGibbon

After designing his defect removal model in Table 83, McGibbon (1996) extended his analysis to include

comparing the Clean Room Methodology, a formal methods-based software development approach, to

Formal Inspections and Informal Inspections (see Table 84). McGibbon’s model reported a 6:1 cost

advantage of Clean Room over Inspections.

A DACS State-Of-The-Art Report 135

Table 84: McGibbon’s Defect Removal Model (Part II)

Cost/Benefits Clean Room Formal Inspection Informal Inspection

Lines of Code 39,967 39,967 39,967

Defects per KSLOC 5 7 7

Total Defects Expected 200 280 280

Design

% Defects Introduced 35% 35% 35%

Total Defects Introduced 70 98 98

% Defects Detected 80% 65% 40%

Defects Detected 56 64 39

Rework Hours/Defect 2.5 2.5 2.5

Total Design Rework 140 159 98

Coding

% Defects Introduced 65% 65% 65%

Total Defects Introduced 130 182 182

% Detects Detected 98% 70% 35%

Defects Detected 141 151 84

Rework Hours/Defect 2.5 2.5 2.5

Total Design Rework 353 378 211

Test

Defects Found in Test 1 51 114

Rework Hours/Defect 25 25 25

Total Test Rework 22 1,271 2,861

% of Defects Removed 99% 95% 85%

Maintenance

Defects Left for Customer 2 14 42

Post Release Defects/KSLOC 0.05 0.35 1.05

Rework Hours/Defect 250 250 250

Total Maintenance Rework 500 3,497 10,491

Maintenance $ $19,484 $136,386 $409,159

Totals

Total Rework Hours 1,014 5,306 13,660

Total Rework Costs $39,544 $206,918 $532,752

Effort $ + Maintenance $ $466,659 $2,618,814 $2,891,586

Clean Room $ Improvement $2,152,155 $2,424,927

Clean Room % Improvement 82% 84%

Ferguson

This defect removal model (as shown in Table 85) was created from data by Ferguson, Humphrey,

Khajenoori, Macke, and Matvya (1997). Size is the number of source lines of code. Defects are the total

number of software defects created. Insertion is the ratio of Defects to Size. Review is the number of

software defects eliminated by reviews. Efficiency is the ratio of Review to Defects. Test is the number of

defects eliminated by Test. Efficiency is the ratio of Test to Defects (less Review). Fielded is the number

of residual defects. 76% of software defects are found by individual review, 24% by dynamic analysis,

and 0% are released to customers.

Using Cost Benefit Analysis to Develop SPI Strategies136

Table 85: Ferguson’s Defect Removal Model

Defect Containment Analysis

Project Size Defects Insertion Review Efficiency Test Efficiency Fielded

1 463 13 3% 8 62% 5 100% 0

2 4,565 69 2% 59 86% 10 100% 0

3 1,571 47 3% 39 83% 8 100% 0

4 3,381 69 2% 47 68% 22 100% 0

5 5 0 0% 0 0% 0 0% 0

6 22 2 9% 2 100% 0 0% 0

7 1] 100% 1 100% 0 0% 0

8 2,081 34 2% 33 97% 0 0% 1

9 114 15 13% 13 87% 2 100% 0

10 364 29 8% 27 93% 2 100% 0

11 7 0 0% 0 0% 0 0% 0

12 620 12 2% 10 83% 2 100% 0

13 720 9 1 % 7 78% 2 100% 0

14 3,894 20 1 % 18 90% 2 100% 0

15 2,075 79 4% 52 66% 27 100% 0

16 1,270 20 2% 19 95% 1 100% 0

17 467 17 4% 14 82% 3 100% 0

18 3,494 139 4% 89 64% 50 100% 0

Total 25,114 575 2% 438 76% 136 99% 1

Table 86: Rico’s Defect Removal Model

Cost/Benefits PSP Inspection Test

Program Size 10 KSLOC 10 KSLOC 10 KSLOC

Start Defects 1,000 1,000 1,000

Review Hours 97.24 708 n/a

Review Detects 666 900 n/a

Defects per Hour 6.85 1.27 n/a

Start Detects 333 100 1,000

Test Hours 60.92 1,144 11,439

Test Defects 333 90 900

Defects per Hour 5.47 12.71 12.71

Total Hours 400 * 1,852 11,439

Total Defects 1,000 990 900

Quality Benefit 100X 10X n/a

Delivered Detects 0 10 100

Cost Benefit 29X 6X n/a

* PSP hours include development time—others only validation time

A DACS State-Of-The-Art Report 137

Rico

The defect removal model in Table 86 was created by Rico (1999), and is a hybrid of models by Ferguson,

Humphrey, Khajenoori, Macke, and Matvya (1997), and McGibbon 1996. Program Size is thousands of

source lines of code. Start Defects are the estimated software defects. Review Hours are the number of

static analysis hours. Review Defects are the number of defects found by static analysis. Defects per Hour

are the ratio of Review Defects to Review Hours. Start Defects are the number of defects escaping

reviews. Test Hours are the number of dynamic analysis hours. Test Defects are the number of defects

found by dynamic analysis. Defects per Hour are the ratio of Test Defects to Test Hours. Total Hours are

the sum of Review Hours and Test Hours (except PSP, which includes total effort). Total Defects are the

sum of Review Defects and Test Defects. Quality Benefit is a ratio of poorest Delivered Defects to next

best Delivered Defects. Delivered Defects are the numbers of defects escaping static and dynamic

analysis. Cost Benefit is a ratio of poorest Total Hours to next best Total Hours.

Humphrey

While Figure 20 represents a Rayleigh life cycle reliability model (Kan, 1995), it is an excellent

illustration of a grossly simplified defect removal model developed for the Personal Software Process

(PSP) by Humphrey (1995). Humphrey introduced a model, he called the Appraisal to Failure Ratio (A/

FR). Mathematically, Appraisal (A) is expressed as 100 * (design review time + code review time) / total

development time. And, Failure Ratio (FR) is expressed as 100 * (compile time + test time) / total

development time. A/FR is simply the ratio of static analysis effort to dynamic analysis effort. While, Kan

advocates the use of Rayleigh models, Humphrey has discovered the much simpler, but extremely

powerful, axiom or software engineering law stating that if more than twice as much effort is spent on

static analysis than dynamic analysis, few, if no software defects will be delivered to customers. And, the

corollary to A/FR is, if more than twice as many software defects are found by static analysis than

dynamic analysis, no defects will be delivered to customers. These axioms prove valid for the 18 software

releases depicted in Table 85, where 76% of software defects were found by static analysis, 24% of

software defects were found by dynamic analysis, and none by customers.

Figure 29. Humphrey’s Defect Removal Model (Part II)

Using Cost Benefit Analysis to Develop SPI Strategies138

Return-on-Investment Model

Since very little ROI data is reported, available, and known for SPI methods, it became necessary to

design a new ROI model in order to act as an original source of ROI data, and establish a fundamental

framework and methodology for evaluating SPI methods (see Table 87).

Table 87: Basic Quality-Based Return-on-lnvestment (ROI) Model

AT&T Basic BNR GilbHP

PSP Inspection Inspection Inspection Inspection Inspection Test Ad Hoc

Software Size 10,000 10,000 10,000 10,000 10,000 10,000 10,000 10,000

Start Defects 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000

Review Efficiency 67% 67% 67% 67% 67% 67% 0% 0%

Review Hours 97 500 708 960 970 1,042 0 0

Review Defects 667 667 667 667 667 667 0 0

Review Detects/Hour 6.86 1.33 0.94 0.69 0.69 0.64 0 0

Review Hours/Defect 0.15 0.75 1.06 1.44 1.46 1.56 0 0

Remaining Defects 333 333 333 333 333 333 1,000 1,000

Test Efficiency 100% 67% 67% 67% 67% 67% 67% 0%

Test Hours 61 1,667 2,361 3,200 3,233 3,472 8,360 0

Test Defects 333 222 222 222 222 222 667 0

Test Defects/Hour 5.47 0.13 0.09 0.07 0.07 0.06 0.08 0

Test Hours/Defect 0.18 7.50 10.63 14.40 14.55 15.63 12.54 0

Validation Defects 1,000 889 889 889 889 889 667 0

Released Defects 0 111 111 111 111 111 333 1,000

Maintenance Hours/Defect 2 75 106 144 146 156 125 125

Development Hours 242 5,088 5,088 5,088 5,088 5,088 5,088 5,088

Validation Hours 158 2,167 3,069 4,160 4,203 4,514 8,360 0

Maintenance Hours 0 8,333 11,806 16,000 16,167 17,361 41,800 125,400

Total Hours 400 15,588 19,963 25,248 25,458 26,963 55,248 130,488

QBreak Even/Ad Hoc 0.78 6.67 6.67 6.67 6.67 6.67 66.67

PBreak Even/Ad Hoc 6.15 1.65 1.72 1.81 1.81 1.84 10.37

PBreak Even/Test 14.59 4.79 5.38 6.33 6.38 6.72

PBreak Even/lnspection 35.96

Slope (Life Cycle Cost) 25.00 0.64 0.50 0.40 0.39 0.37 0.18 0.08

Y Intercept (w/lnvestment) -2000.00 - 12.19 -9.52 -7.53 -7.46 -7.05 - 14.12

HBreak Even/Ad Hoc 80.25 21.58 22.43 23.56 23.61 23.95 135.27

HBreak Even/Test 80.58 26.47 29.75 34.99 35.24 37.11

HBreak Even/lnspection 81.44

ROI/Ad Hoc 1,290:1 234:1 160:1 114:1 113:1 104:1 10:1

ROI/Test 430:1 67:1 42:1 27:1 26:1 23:1

ROI/Inspection 143: 1

A DACS State-Of-The-Art Report 139

This original software quality-based ROI model is a direct extension of an earlier work by Rico (1999) as

exhibited by Table 65, that was designed for the express purpose of evaluating ROI. It is a seemingly

simple, though intricately complex composite of multiple sub-models, simulating the effects of several

SPI methods on efficiency, productivity, quality, cost, break-even points, and ROI. Some of the sub-

models represented include a defect removal model and multiple empirical statistical parametric linear

and log-linear software cost models.

The defect removal model or defect containment analysis model is an experimentally, scientifically,

empirically, and commercially validated software quality-based approach to examining SPI method

effectiveness and ROI, introduced and used extensively by several major studies (Kan, 1995; Grady, 1994

and 1997; McGibbon, 1996). The defect removal model is based on statistically modeling software defect

populations and the costs and efficiencies of SPI methods for eliminating those same software defect

populations. The method involves estimating software defect populations, estimating the efficiency of SPI

methods for eliminating software defects, estimating the residual software defect population after

applying a particular SPI method, and estimating the cost of eliminating the residual software defect

population delivered to customers. If a particular SPI method is expensive and inefficient, then a large and

expensive software defect population is delivered to customers. Likewise, if a SPI method is inexpensive

and efficient then a small and inexpensive software defect population is delivered to customers. It is these

relationships that establish an empirically valid basis for analyzing and comparing the costs, benefits, and

ROI of using several similar software quality-based SPI methods. While, Kan warns that defect removal

models may not be good for precision software reliability modeling, Kan does identify them as a strategic

software quality management tools. Like, Gilb (1993), Grady, and McGibbon, this model has been

extended to approximate ROI.

Software Size

The Software Size chosen for this ROI model is 10,000 source lines of code (SLOCs). When this model

was originally designed (Rico, 1999), it was thought that this Software Size was too small and non-

representative of software-based products and services. Classical Software Sizes ranged in the hundreds

of thousands and even millions of SLOCs for second and third generation programming languages (Kan,

1995). However, this number may not be too small, but too large, as modern websites range in the dozens

and hundreds of SLOCs. A typical software maintenance release may involve as little as a single SLOC,

and average around five to ten SLOCS. So, an input into an ROI model of only 10,000 SLOCs doesn’t

seem so unreasonably small after all.

Start Defects

The Start Defects chosen for this ROI model are 1,000, or about 10%. This number wasn’t arbitrarily

chosen, and isn’t necessarily unreasonably high. It was based on empirical studies that report software

defect insertion rates ranging from 10% to 15%, and occasionally as high as 150% (Humphrey, 1995 and

1996). This ROI model input is a little more controversial, since several authoritative studies report Start

Defects as low as 1% to 3%. What these numbers represent is number of defective SLOCs before any

kind of Testing. For a person to have a 1% Start Defect rate, would be for only one in a hundred SLOCs to

be defective upon initial computer programming. A 10% Start Defect rate means that ten out of a hundred

SLOCs are defective upon initial computer programming. Start Defects of 1,000 or 10% is a good and

solid assumption. If anything, Start Defects probably exceed 10%, driving the ROI of the best performing

SPI methods up rather sharply. Varying this input would make an excellent study.

Using Cost Benefit Analysis to Develop SPI Strategies140

Review Efficiency

Review Efficiency refers to the ratio of software defects eliminated to remaining software defects, after

applying a pre-Test-based SPI method, such as the Personal Software Process (PSP) or the Software

Inspection Process. Review Efficiency is also based on estimating statistical defect populations, and

evaluating the number of software defects eliminated by a SPI method, versus the estimated residual

software defect population. In other words, the number of software defects before and after applying a SPI

method are estimated, and the Review Efficiency is estimated based on the number of software defects

eliminated by the SPI method. For example, if a software defect population is estimated to be 10 and a

SPI method eliminates seven software defects, then the Review Efficiency of the SPI method is estimated

to be 70%. Siy (1996) identified three basic kinds of software defect estimation methods, Capture-

Recapture, Partial Estimation of Detection Ratio, and Complete Estimation of Detection Ratio. Siy

reported Capture-Recapture to be invalid, and Complete Estimation of Detection Ratio to be best.

Ironically, Capture-Recapture methods are emerging as one of the most useful techniques for these

purposes as reported by the Fraunhofer-Institute (Briand, El Emam, Freimut, and Laitenberger, 1997;

Briand, El Emam, and Freimut, 1998; Briand, El Emam, Freimut, and Laitenberger, 1998). Humphrey

(2000) also reports that a form of Capture-Recapture methods is the preferred software quality estimation

method of the Team Software Process (TSP). Review Efficiencies for the Software Inspection Process are

pessimistically reported to hover around 67% (McGibbon, 1996; Gilb, 1993). However, Fagan (1986)

reports 93% Review Efficiencies and Weller (1993) reports a high of 98.7%. A Review Efficiency of 67%

is very solid assumption, and doesn’t risk offending Software Inspection Process Review Efficiency

conservatives. In the case of the PSP, a 67% Review Efficiency was derived from a PSP study by

Ferguson, Humphrey, Khajenoori, Macke, and Matvya (1997). Increasing Review Efficiency increases the

ROI of using the Software Inspection Process, and decreases the ROI of using the PSP. Varying this input

would also make an excellent study.

Review Hours

Review Hours were estimated from six-different software cost models (see Table 88). PSP Review Hours

came from a custom software cost model developed by Rico (1998), which itself was derived from

software productivity data for the PSP, as reported by Hays and Over (1997). Average PSP Review Hours

were derived from Hays’ and Over’s study.

Table 88: Six Software Cost Models for Two Strategies

Method Software Cost Model Author Source

PSP SLOC /25 Rico (1998) Hays (1997)

Inspection SLOC / (Rate * 2) * (Team Size * 4 + 1) Rico (1993) Russell (1991)

SLOC / (Rate * 2) * 25 Grady (1994) Hewlett Packard

50 * KSLOC Barnard (1994) AT&T

3 * KSLOC * 4 * 8 Russell (1991) Bell Northern

SLOC / (Rate * 2) * (5.76 * Team Size) Gilb (1993) Fagan (1976)

A DACS State-Of-The-Art Report 141

Hays and Over reported an average PSP design and code Review Hour percentage of 24.31% for

Programs seven, eight, and nine, involving data from 298 engineers. Review Hours of 97 is a factor of

24.31% and 400 total PSP hours as derived from Rico’s PSP software cost model for 10,000 SLOCs.

Review Hours of 500, 708, 960, 970, and 1,042 were derived from the Software Inspection Process

software cost models shown in Table 88 as derived by Rico (1993 and 1996). Figure 30 depicts the

architecture of Rico’s (1993) Software Inspection Process cost model and how it was designed. Rico used

Russell’s study (1991) as a basis for designing and validating his model. Rate refers to the number of

SLOCs per hour to be reviewed, and was input as 120, twice as much as optimally recommended. Team

Size was input as four inspectors. These five Software Inspection Process effort estimates were part of a

sensitivity analysis exhibiting the range of costs and benefits for the Software Inspection Process in

industrial use, and the associated ROI. While this study refrained from varying Start Defects and Review

Efficiency as too low level of a sensitivity analysis, it was felt that exhibiting a wide range of authoritative

Software Inspection Process cost models would lend authority and validity to this newly designed ROI

model. Average ROIs will be used for later SPI method cost and benefit analyses.

Figure 30. Software Inspection Process Cost Model Architecture

Using Cost Benefit Analysis to Develop SPI Strategies142

Review Defects

Review Defects, that is the number of software defects eliminated by the SPI method from the total

estimated software defect population, were estimated by multiplying Start Defects by Review Efficiency,

yielding 667 Review Defects out of 1,000 Start Defects. While, these numbers may seem small and

inefficient, the economic savings of these relatively conservative numbers will yield extremely beneficial

results, as reported later. A Testing-only approach, which is quite common, involves no pre-Test reviews,

SPI methods, or Review Efficiencies, nor does an ad hoc software development approach.

Review Defects/Hour

Review Defects/Hour are estimated by dividing estimated Review Defects by the estimated Review

Hours, yielding 6.86, 1.33, 0.94, 0.69, 0.69, 0.69, and 0.64. This is actually a phenomenal computation,

especially for the PSP. Historically (Russell, 1991; Weller, 1993), the Software Inspection Process has

yielded approximately one major software defect per Software Inspection Process hour. However, as

evident, the PSP is yielding nearly seven software defects per Review Hour. This will obviously increase

the ROI of using the PSP over the Software Inspection Process, Software Test Process, and ad hoc

methods. And, this number both challenges and validates an entire body of research from the likes of

Fagan (1976 and 1986), Humphrey (1989), Russell (1991), Weller (1993), and Siy (1996). Fagan,

Humphrey, Russell, and Weller claim that the Software Inspection Process is one of the most efficient

review, defect removal, or static analysis methods in existence, dwarfing defect removal efficiencies of

individual review methods. University of Maryland researchers, epitomized by Siy, claim that the

Software Inspection Process is no more efficient, but rather equally as efficient, as individual reviews.

Ferguson, Humphrey, Khajenoori, Macke, and Matvya (1997) have demonstrated that both the industrial

and academic researchers weren’t completely correct. Ferguson, Humphrey, Khajenoori, Macke, and

Matvya have shown that individual review processes can be seven times more efficient than the Software

Inspection Process, seemingly eliminating the team dynamic as a contributing factor to Review

Efficiency. Once again, Testing and ad hoc methods don’t yield pre-Test Review Defects/Hour.

Review Hours/Defect

Review Hours/Defect, signifying how many hours are required to find a software defect using the

prescribed SPI method, are estimated by dividing estimated Review Hours by estimated Review Defects,

yielding 0.15, 0.75, 1.06, 1.44, 1.46, and 1.56. The PSP yields a software defect every nine minutes, while

the Software Inspection Process takes over an hour and a half to yield a software defect, in the worst case,

a difference of over 10:1 in the PSP’s favor. Of course, Testing and ad hoc methods don’t yield pre-Test

Review Hours/Defect.

Remaining Defects

Remaining Defects refer to the estimated residual software defect population following application of a

pre-Test SPI method such as the PSP or the Software Inspection Process, yielding an estimated pre-Test

software defect population of 333, except for the Software Test Process and ad hoc methods which start at

1,000. Once again, this number is derived from estimated total software defect populations, less estimated

Review Efficiencies. Higher Review Efficiencies using the Software Inspection Process are practically

possible, as reported by Fagan (1986), Russell (1991), and Weller (1993), reaching almost 99% in some

cases. A best-in-class Review Efficiency of nearly 99% would result in an estimated 10 Remaining

Defects and would change the outcomes of the ROI model exhibited by Table 87.

A DACS State-Of-The-Art Report 143

Test Efficiency

Test Efficiency refers to the ratio of software defects eliminated to remaining software defects, after

applying a Software Test Process. Test Efficiency is also based on estimating statistical defect

populations, and evaluating the number of software defects eliminated by Testing, versus the estimated

residual software defect population. In other words, the number of software defects before and after

applying Testing are estimated, and the Test Efficiency is estimated based on the number of software

defects eliminated by Testing. For example, if a software defect population is estimated to be 10 and

Testing eliminates seven software defects, then the Test Efficiency estimated to be 70%. The PSP yields a

Test Efficiency of 100% as reported by Ferguson, Humphrey, Khajenoori, Macke, and Matvya (1997),

which is further corroborated by a much more detailed study by Hays and Over (1997). 100% is

remarkably impressive for Testing, as is probably due to the highly prescriptive nature of the PSP. Test

Efficiency usually averages around 67% for best-in-class organizations as reported by Humphrey (1989),

and is typically much lower as reported by preliminary findings by Burnstein, Homyen, Grom, and

Carlson (1998). Yamamura (1998) and Asada and Yan (1998) report much higher Test Efficiencies

reaching better than 99%, but are certainly not the norm. Sommerville (1997) reports that organizations

typically allocate 30% to 40% of organizational resources to Test. But, in fact organizations typically

allocate about 1% of organizational resources to ad hoc and highly unstructured Testing yielding Test

Efficiencies of much lower than 67%, as alluded to by Burnstein, Homyen, Grom, and Carlson. In fact, a

Test Efficiency of 67% is actually far too generous, and lowering this to 5% or 10% would not be

unreasonable. Even some best-in-class Testing approaches don’t estimate statistical defect populations,

basing software quality estimation decisions on the use of reliability and exponential growth models

(Asada and Yan, 1998), potentially grossly underestimating and ignoring software defect populations.

Other best-in-class Testing approaches that do estimate statistical software defect populations rely largely

on Testing to eliminate them (Yamaura, 1998), spending as much as 10X more than necessary. It is the

economic inefficiency of Testing that is ignored or unknown by Testing advocates (Yamaura; Asada and

Yan; Burnstein, Homyen, Grom, and Carlson), because Testing costs more than 10X the effort of

Inspections. Ad hoc methods have no Test Efficiency.

Test Hours

Test Hours are estimated to be the product of estimated Remaining Defects, Test Efficiency, and Review

Defects/Hour (multiplied by 10), for the Software Inspection Process and the Software Test Process,

yielding 1,667, 2,361, 3,200, 3,233, 3,472, and 8,360. Test Efficiency for the Software Test Process was

derived from the same basic model, except that Review Defects/Hours were an average of the five

Software Inspection Process Review Defects/Hour. Hays and Over (1997) reported an average PSP Test

Hour percentage of 15.23% for Programs seven, eight, and nine, involving data from 298 engineers. Test

Hours of 60.92 is a factor of 15.23% and 400 total PSP hours as derived from Rico’s (1998) PSP software

cost model for 10,000 SLOCs. Ad hoc methods have no Test Hours.

Test Defects

Test Defects, that is the number of software defects eliminated by Testing from the estimated software

defect population, were estimated by multiplying Remaining Defects by Test Efficiency, yielding 333 for

the PSP-based Testing, 222 for post-Inspection-based Testing, and 667 for Testing alone. Ad hoc methods

have no Test Defects.

Using Cost Benefit Analysis to Develop SPI Strategies144

Test Defects/Hour

Test Defects/Hour are estimated by dividing estimated Test Defects by the estimated Test Hours, yielding

5.47, 0.13, 0.09, 0.07, 0.07, 0.06, and 0.08, for the PSP, post-Inspection-based Testing, and Testing alone.

What this shows is that post-Inspection-based Testing and Testing alone yield about a tenth of a defect per

Test Hour, while PSP-based Testing yields nearly six defects per Test Hour, a difference of nearly 66:1 in

the PSP’s favor. Ad hoc methods have no Test Defects/Hour.

Test Hours/Defect

Test Hours/Defect, signifying how many hours are required to find a software defect using the Software

Test Process, are estimated by dividing estimated Test Hours by estimated Test Defects, yielding 0.18, 7.5,

10.63, 14.4, 14.55, 15.63, and 12.54, for PSP-based Testing, post-Inspection-based Testing, and Testing

alone. The PSP yields a software defect every 11 minutes, while post-Inspection-based Testing and

Testing alone require over 12.5 hours to yield a defect. Ad hoc methods have no Test Hours/Defect.

Validation Defects

Validation Defects are the sum of Review Defects and Test Defects, signifying the total number of

estimated software defects eliminated by the various SPI methods, yielding, 1,000 or 100% for the PSP,

889 or 89% for Inspections and post-Inspection-based Testing, and 667 for Testing alone. It’s remarkable

that the PSP is reported to have a nearly 100% defect removal efficiency as reported by Ferguson,

Humphrey, Khajenoori, Macke, and Matvya (1997). While, the PSP is reported to have a Review

Efficiency of only 67%, the PSP’s Testing approach is reported to have a 100% Test Efficiency. Once

again, this can only be attributed to the highly structured and prescriptive nature of the PSP. For the PSP,

it’s time to start analyzing the benefits. But, for Inspections, Testing, and ad hoc approaches, it’s time to

begin weighing the costs of inefficiency. Ad hoc methods, in the worst case, have no Validation Defects.

This is very significant, because it is theorized that more than 95% of world-wide software producing

organizations neither use Inspections or Test, as alluded to by the Software Engineering Institute (1999)

and Burnstein, Homyen, Grom, and Carlson (1998). What this means is that the typical software

producing organizations probably delivers the majority of a rather significant software defect population

to its customers. It also means, that it wouldn’t be typical for software producing organizations to be

yielding the Validation Defects as exhibited by the PSP, Inspections, and even the much maligned Testing.

Released Defects

Released Defects are the number of estimated Start Defects less Review Defects and Test Defects for the

various SPI methods, yielding 0.0 for the PSP, 111 for Inspections and post-Inspection-based Testing, 333

for Testing alone, and 1,000 for ad hoc methods. A low Release Defect value is the signature of a good

quality-based SPI method, such as the PSP, Inspections, and even good Testing. Unfortunately, Release

Defects are the strategic metric ignored by modern practitioners and even Testing enthusiasts, who

couldn’t possibly cost-effectively remove estimated software defect populations, and end up ignoring

Released Defects.

Maintenance Hours/Defect

Maintenance Hours/Defect are estimated by multiplying Test Hours/Defect by 10, yielding 2, 75, 106,

144, 146, 156, and 125, for the PSP, Inspections, and Test. What this shows is that software maintenance

costs an order of magnitude more than Testing, as commonly attested to by Russell (1991), Weller (1993),

Kan (1995), and McGibbon (1996). Since ad hoc methods don’t have Test Hours/Defect, 125 is assumed

to be the Maintenance Hours/Defect, which is an average of post-Inspection-based Testing estimates.

A DACS State-Of-The-Art Report 145

Development Hours

Development Hours refer to the complete effort to produce a software product, and were estimated from

five different linear and log-linear empirical statistical parametric software cost estimation models (see

Table 89), yielding 242 for the PSP and 5,088 for Inspections, Testing, and ad hoc methods. Rico’s (1998)

PSP software cost model derived from a study by Hays and Over (1997) was used to yield the 242 PSP

Development Hours. Inspections and Testing are only software validation methods, and their associated

effort reported in Review Hours doesn’t account for total software development effort. Thus, it is

necessary to estimate the total software development effort and add it to Inspection and Test Effort, in

order to arrive at an estimate that can be compared to the PSP and ad hoc methods for analytical purposes.

In this case, it was decided to use an average of software cost models by Boehm, Walston/Felix, Bailey/

Basili, and Doty, as reported by McGibbon (1997). McGibbon’s models output staff months, so it was

necessary to transform their output into staff hours by multiplying each software cost model output by

2,080/12, before averaging them. Since Sommerville (1997) reports that 30% to 40% of software develop-

ment effort is Testing, a conservative 25% was removed from the software cost model estimates before

averaging them. This last transformation was necessary to remove validation cost built into each model.

Validation Hours

Validation Hours are the sum of estimated Review Hours and Test Hours, representing the total validation

effort for PSP, Inspection, and Testing, yielding 158, 2,167, 3,069, 4,160, 4,203, 4,514, and 8,360. There

are two surprising elements of these estimates, the unusually small total Validation Hours for the PSP,

yielding an advantage of nearly 22:1 in the PSP’s favor over Inspections, and a 53:1 PSP advantage over

Testing. Ad hoc methods are assumed to have no Validation Hours.

Maintenance Hours

Maintenance Hours are estimated to be the product of Released Defects and Maintenance Hours/Defect,

representing only the cost of eliminating software defect populations estimated to have escaped

elimination, primarily by Inspections, Testing, and ad hoc methods, yielding 0, 8,333, 11,806, 16,000,

16,167, 17,361, 41,800, and 125,400. A study by Ferguson, Humphrey, Khajenoori, Macke, and Matvya

(1997) estimates that the PSP allows no defects to escape, thus resulting in no software maintenance effort

to remove residual software defects. Inspection averages a phenomenally large 13,933 software

maintenance hours to remove residual software defects. This is the part of the equation that is dangerously

ignored by lightweight Testing methods such as those advocated by Asada and Yan (1998) or dealt with

by Testing alone, as in the case of Yamaura (1998). Ad hoc methods yield a seemingly astronomical

software maintenance cost of 125,400 hours. This study now begins to explode the contemporary myth

that high software process maturity is more expensive than low software process maturity as Rico (1998)

attempts to debunk SPI myths as well, and explode myths that SPI methods like PSP and Inspections cost

more than not using them at all.

Table 89: Five Software Cost Models for Estimating Software Development Effort

Software Cost Model Author Source Form Output

SLOC /25 Rico (1998) Hays (1997) Linear Hours

3 * KSLOC ^ 1.12 McGibbon (1997) Boehm Log-Linear Months

5.2 * KSLOC A 0.91 McGibbon (1997) Walston/Felix Log-Linear Months

5.5 + 0.73 * KSLOC ^ 1.15 McGibbon (1997) Bailey/Basili Log-Linear Months

5.288 * KSLOC ^ 1.047 McGibbon (1997) Doty Log-Linear Months

Using Cost Benefit Analysis to Develop SPI Strategies146

Total Hours

Total Hours are estimated to be the sum of Development Hours, Validation Hours, and Maintenance

Hours, for the PSP, Inspections, Testing, and ad hoc methods, yielding 400, 15,588, 19,963, 25,248, 25,

458, 26,963, 55,248, and 130,488. Total Hours for the PSP are a miniscule 400, compared to an average

Inspection-based cost of 22,644 hours, for a 57:1 PSP advantage. Total Testing-based Hours are 138X

larger the PSP, and a surprisingly small 2.44X larger than Inspection-based hours. Total ad hoc hours are

326X larger than PSP, 2.36X larger than Testing-based hours, and 5.76X larger than Inspection-based

hours.

QBreak Even/Ad Hoc

QBreak Even/Ad Hoc is estimated by dividing the Review Hours or Testing Hours by the Maintenance

Hours/Defect, which is based on estimating software maintenance hours saved or avoided by applying the

SPI methods, yielding 0.78 hours for the PSP, 6.67 hours for Inspections, and 66.67 hours for Testing.

QBreak Even/Ad Hoc is a special software quality-based break even point algorithm, which derives its

estimate based the number of defects eliminated by a particular SPI method in order to pay for itself. PSP

QBreak Even/Ad Hoc was uniquely calculated by dividing its Review Hours by the average Inspection-

based Maintenance Hours/Defect, in order to have a normalizing effect for comparison to Inspection-

based QBreak Even/Ad Hoc. Otherwise, the PSP QBreak Even/Ad Hoc would appear rather large,

because the cost of PSP-based software maintenance is 63X lower than Inspection-based software

maintenance. QBreak Even/Ad Hoc is one of the single most interesting results yielded by this study,

because it averages a ridiculously low 14.4 hours. This means that after only 14 hours into the application

of the PSP, Inspections, and Testing, each of these SPI methods have already paid for themselves based on

the QBreak Even/Ad Hoc algorithm. Let’s state this another way, an organization could apply these

methods without additional special funding and come in under budget. Yet another contemporary myth

surrounding the application of SPI methods has been surprisingly and unexpectedly exploded or shattered

by this study. While, QBreak Even/Ad Hoc is a valid software quality-based model for break even

analysis, it is unconventional, demanding a more conventional break-even algorithm called PBreak Even.

PBreak Even/Ad Hoc

PBreak Even/Ad Hoc, signifying “productivity-based” break even point, is estimated by dividing the

investment in the higher productivity SPI method by the difference in SPI method productivity, and

multiplying the result by the product of the SPI method productivity, as shown in Figure 31. This SPI

break even point algorithm is a new custom model created especially for this study, based on classical

linear programming methods as found in textbooks, such as those by Turban and Meridith (1994) and

Garrison and Noreen (1997). PBreak Even/Ad Hoc yields 6.15, 1.65, 1.72, 1.81, 1.81, 1.84, and 10.37

break even SLOCs for SPI methods over ad hoc software development approaches. PSP’s PBreak Even/

Ad Hoc is 6.15 SLOCs, while Inspection-based development averages 1.77 SLOCs, and Testing-based

development needs to produce a mere 10.37 SLOCs before each of these SPI methods pay for themselves,

based on classical productivity analysis and data derived from Table 87. If it hasn’t started to sink in yet,

these numbers are astonishingly low, given that three decade long resistance to SPI methods is rooted in

the myth and fallacy that SPI methods never pay for themselves, and must be used at a loss in profit. The

plain fact of the matter is that SPI method benefits in quality and productivity can be invested in and

achieved while still yielding an excellent profit. SPI doesn’t seem to be the “long journey” that it once

was believed to be (Billings, Clifton, Kolkhorst, Lee, and Wingert, 1994).

A DACS State-Of-The-Art Report 147

PBreak Even/Test

PBreak Even/Test, once again, is estimated by dividing the investment in the higher productivity SPI

method by the difference in SPI method productivity, and multiplying the result by the product of the SPI

method productivity, as shown in Figure 31. PBreak Even/Test yields 14.59, 4.79, 5.38, 6.33, 6.38, and

6.72 break even SLOCs for SPI methods over Testing. PSP’s PBreak Even/Test is 14.59 SLOCs, while

Inspection-based development need only produce an average of 5.92 SLOCs before overtaking the

benefits of Testing alone. The reason the PSP and Inspection PBreak Even/Test rose slightly, but

insignificantly, is because of the increased productivity of Testing over ad hoc software development

approaches.

PBreak Even/Inspection

PBreak Even/Inspection is estimated by dividing the investment in the higher productivity SPI method by

the difference in SPI method productivity, and multiplying the result by the product of the SPI method

productivity, as shown in Figure 31. PBreak Even/Inspection yields 35.96 break even SLOCs for PSP

over an average of Inspection productivity. The PSP need only produce 35.96 SLOCs before overtaking

the benefits of Inspection-based development alone. The reason the PSP PBreak Even/Inspection rose

sharply, but still insignificantly, is because of the increased productivity of Inspection over Testing. This

study has examined two break even point algorithms, one based on software quality and the other based

on productivity, yielding 19.5 SLOCs (0.78 PSP hours by 25 PSP SLOCs per Hour) for the first and 35.96

SLOCs for the second. One of the reasons, other than being fundamentally different ROI algorithms and

approaches, is that QBreak Even doesn’t factor in initial SPI method investment costs. All of these results

are first-time findings yielded by this study. They were not anticipated and were quite surprising. It took

several months of effort to analyze the preliminary findings and validate the results, which are likely, due

to the fact that software development isn’t a capital-intensive industry, like manufacturing.

Figure 31. Custom Software Process Improvement (SPI) Break Even Model

Using Cost Benefit Analysis to Develop SPI Strategies148

Slope (Life Cycle Cost)

Slope (Life Cycle Cost) is a linear model or equation representing total software life cycle costs,

estimated by dividing Software Size by Total Hours, yielding 25, 0.64, 0.5, 0.4, 0.39, 0.37, 0.18, and 0.8,

for each of the SPI methods (including ad hoc). The larger the slope is, the higher the productivity. Larger

slopes should always overtake smaller slopes at some point in time. The trick is analyzing whether a

higher productivity SPI method will overtake lower productivity methods in a reasonable length of time.

That is, before the schedule expires. That doesn’t seem to be a problem with these SPI methods, as they

overtake the lower productivity ones in a matter of hours, not even days.

Y Intercept (w/Investment)

Y Intercept (w/Investment) is a key term in a new linear model or equation representing total software life

cycle costs, factoring in initial SPI method investment costs, yielding –2000, –12.19, –9.52, –7.53, –7.46,

–7.05, and –14.12, for each of the SPI methods (except ad hoc). The literal Y Intercept (w/Investment)

equation is, (Slope (Life Cycle Cost) – Slope (Life Cycle Cost) * (Investment * 2 + 1)) / 2. The higher the

Y Intercept (w/Investment) is, the higher the initial investment cost is and the later it will break even.

HBreak Even/Ad Hoc

HBreak Even/Ad Hoc determines the break even point in effort for each SPI method over ad hoc

approaches, estimated by dividing the sum of PBreak Even/Ad Hoc and Y Intercept (w/Investment) by the

Slope (Life Cycle Cost), yielding 80.25, 21.58, 22.43, 23.56, 23.61, 23.95, and 135.27 hours. Now we

start getting to some meaningful numbers. Again, HBreak Even/Ad Hoc represents the effort required to

break even using each SPI method over ad hoc approaches. PSP requires 80.25 hours of investment effort

to break even, over ad hoc approaches, based on total software life cycle costs. Be careful, not to

mistakenly equate HBreak Even/Ad Hoc with the initial investment effort itself. For instance, the initial

investment effort for PSP is 80 hours, while PSP HBreak Even/Ad Hoc is 80.25. The reason that the PSP

requires only 15 minutes more effort over its initial investment effort is because the PSP is a highly

productive SPI method, when total software life cycle costs are factored in. It is conceivable that a SPI

method could have a much longer HBreak Even/Ad Hoc because its associated productivity is very low.

HBreak Even/Test

HBreak Even/Test determines the break even point in effort for each SPI method over Test, estimated by

dividing the sum of PBreak Even/Test and Y Intercept (w/Investment) by the Slope (Life Cycle Cost),

yielding 80.58, 26.47, 29.75, 34.99, 35.24, and 37.11 hours. Again, HBreak Even/Test represents the

effort required to break even using each SPI method over Test. PSP requires 80.58 hours of investment

effort to break even, over Test approaches, based on total software life cycle costs. See the previous

paragraph for a caution on interpreting this result.

HBreak Even/Inspection

HBreak Even/Inspection determines the break even point in effort for PSP over Inspection, estimated by

dividing the sum of PBreak Even/Inspection and Y Intercept (w/Investment) by the Slope (Life Cycle

Cost), yielding 81.44 hours. Again, HBreak Even/Inspection represents the effort required to break even

using PSP over Inspection. PSP requires 81.44 hours of investment effort to break even, over Inspection

approaches, based on total software life cycle costs. PBreak Even/Inspection highlights an important

point. Notice that PBreak Even/Inspection is 35.96 while Hbreak Even/Inspection is 81.44. And, PBreak

Even/Inspection is 2.46X larger than PBreak Even/Test. However, HBreak Even/Inspection is merely

A DACS State-Of-The-Art Report 149

1.01X larger than HBreak Even/Test. What this means is that for an additional 8.4 minutes of PSP effort,

PSP not only breaks even over Test, but highly lauded Inspections as well.

ROI/Ad Hoc

ROI/Ad Hoc is estimated by subtracting Maintenance Hours for each SPI method from Maintenance

Hours for ad hoc methods and then dividing the result by Review Hours or Test Hours, characterizing the

difference as ROI, yielding 1,290:1, 234:1, 160:1, 113:1, 104:1, and 10:1. PSP’s ROI continues the trend

of astonishing cost and benefit analysis, while Inspections average a sobering 145:1 advantage over ad

hoc methods, and Testing brings up the rear with a 10:1 ratio. Inspections have carried an unjustifiable

stigma as being too expensive to implement, while this study shows that it costs more not to use

Inspections than to use them. Humphrey’s (2000) Team Software Process (TSP), one of the newest team-

based software quality methodologies continues to feature Inspections as the principal validation method.

ROI/Test

ROI/Test is estimated by subtracting Maintenance Hours for each SPI method from Maintenance Hours

for Testing and then dividing the result by Review Hours, characterizing the difference as ROI, yielding

430:1, 67:1, 42:1, 27:1, 26:1, and 23:1. PSP’s ROI/Test is an extremely high 430:1, barely justifying

improvement of the Testing process alone, while Inspections average a 37:1 ROI advantage over Testing.

ROI/Inspection

ROI/Inspection is estimated by subtracting PSP Maintenance Hours from the average of Inspection-based

Maintenance Hours and then dividing the result by PSP Review Hours, characterizing the difference as

ROI, yielding an ever impressive 143:1 PSP ROI advantage over Inspections. The PSP still garners a

seemingly astronomical ROI/Inspection.

Break Even Point Model

Eight software life cycle cost models and seven software life cycle cost models with initial investment

effort factored into them were designed for the seven SPI methods and ad hoc approach, previously

identified in the ROI model, for supporting graphical break even point analyses (see Table 90).

 Table 90: Graphical Break Even Point Analysis with

Software Life Cycle Cost Models

Method Life Cycle Cost * Life Cycle Cost **

Ad Hoc SLOC /0.08

Test SLOC / 0.18 (SLOC + 14.12) / 0.18

HP Inspection SLOC /0.37 (SLOC + 07.05) /0.37

Gilb Inspection SLOC /0.39 (SLOC + 07.46) /0.39

BNR Inspection SLOC /0.40 (SLOC + 07.53) /0.40

Basic Inspection SLOC /0.50 (SLOC + 09.52) /0.50

AT&T Inspection SLOC /0.64 (SLOC + 12.19) /0.64

PSP SLOC /25.0 (SLOC + 2000) / 25.0

* Yields effort in hours

** Yields effort in hours (includes initial investment effort)

Using Cost Benefit Analysis to Develop SPI Strategies150

While only an afterthought at first, minor break even analyses were initially performed. However, initial

break even analyses proved instrumental to understanding fundamental SPI method costs and benefits, as

well as management implications of implementing, and even not implementing various SPI methods. The

first approach was to conduct graphical break even analyses. These attempts were initially inadequate and

led to mathematical break even analyses, and the formulation of QBreak Even. QBreak Even didn’t

support classical break even analyses, because it didn’t factor in initial investment costs. This led to the

formulation of PBreak Even, which did factor in initial investment costs, calculating the number of units

(SLOCs) that had to be produced to break even. Further graphical analyses indicated that break even

analyses were somewhat inadequate and initially misinterpreted, leading to the formulation of HBreak

Even. HBreak Even, like PBreak Even factored in initial investment costs, calculating effort required to

break even. So, both mathematical and graphical break even analyses were instrumental to identifying

break even points, formulating break even algorithms and models, validating break even analyses, and

making correct interpretations. Graphical break even analyses using software life cycle cost models

identified in Table 90, that may now be considered the lynch pin of this entire study—certainly the ROI

model, are now illustrated.

Once again, graphical break even analysis proved infinitely valuable to finding some initial problems in

software life cycle cost model formulation, precision calibration in the graphical analysis itself, and

overall validation of PBreak Even and HBreak Even equations and models. For instance, the axes on the

graphs were initially formatted for display as whole numbers without fractional or decimal portions. So,

when the break-even points were circled and identified, this simple technique pointed out multiple

problems or errors. The graphical solution didn’t match the mathematical solution. The second problem

was with the software life cycle cost models in Table 90. The cost models were placed there for a reason,

to serve as the basis for graphical analyses and solutions. That is, the cost models were exhibited in order

to validate the break even analysis model. But, when the cost models were exercised, they yielded

incorrect values. Without graphical analyses, it may have been difficult at best to identify mathematical

and interpretation errors. In fact, it was more of an iterative process of mathematical modeling, graphical

modeling, mathematical modeling, graphical modeling, and so on.

Figure 32. Test vs. Ad Hoc Graphical Break Even Analysis

A DACS State-Of-The-Art Report 151

Test vs. Ad Hoc

Testing-based SPI methods overtake ad hoc software development after only 135.25 hours of effort (as

shown in Figure 32). This is both surprising and perhaps troubling to some. It’s surprising, because for

large projects, little more than three staff weeks are needed to both train Testers and have Testing pay for

itself. For large projects, the Testing HBreak Even/Ad Hoc more than justifies investment in sound

Testing methodologies. For small projects and websites, three staff weeks may just about consume an

entire program’s cost. Keep in mind, however, that this graph only represents a one-time “startup” cost.

Once sound Testing methodologies have been invested in, then Testing begins paying for itself after only

one hour, because its slope is greater than the slope of ad hoc approaches. Keep in mind, that this break

even analysis is only calibrated for the cost of one individual. None of the software life cycle cost models

were derived to input variable size organizational groups. It’s not to say that more robust break even

equations and models can’t be formulated. But, that the software life cycle models in this study weren’t

designed for that purpose. This would be a great independent study, developing software life cycle cost

models for variable organizational sizes. Once again, these models were for analytical purposes, and are

not currently scaleable for industrial use, as shown.

Figure 33. Inspection vs. Ad Hoc Graphical Break Even Analysis

Inspection vs. Ad Hoc

Inspection-based SPI methods overtake ad hoc software development after only 23.02 hours of effort (as

shown in Figure 33). Inspection-based SPI methods seem to break even over ad hoc approaches 5.88X

sooner than Test-based SPI methods. This is primarily the result of two reasons, Inspection-based SPI

methods are reported to have a lower initial investment cost, and Inspection-based SPI methods are 225%

more productive than Test-based SPI methods. Once again, these models are for analytical purposes and

weren’t designed to be scaleable for multiple size organizational use, as is.

Using Cost Benefit Analysis to Develop SPI Strategies152

PSP vs. Ad Hoc

PSP-based SPI methods overtake ad hoc software development after only 80.25 hours of effort (as shown

in Figure 34). PSP-based SPI methods seem to break even over ad hoc approaches 3.49X later than

Inspection-based SPI methods, because initial PSP investment costs are 4.21 times higher than those of

Inspection. However, PSP is 54.35X more productive than Inspection-based SPI methods. Once again,

these models are for analytical purposes and weren’t designed to be scaleable for multiple size

organizational use, as is.

Figure 34. PSP vs. Ad Hoc Graphical Break Even Analysis

Inspection vs. Test

Inspection-based SPI methods overtake Test-based SPI methods after 32.71 hours of effort (as shown in

Figure 35). Inspection-based SPI methods are 2.56X more productive than Test-based SPI methods,

though the graphical analysis doesn’t seem to illustrate the disparity in productivity. This is probably

because of the scale of the graph, with increments of single digit hours and SLOCs. This graph doesn’t

seem to have the dramatic spread between productivity slopes, such as those exhibited by the PSP.

However, 32.71 hours are less than a single staff week, and are no less impressive for projects of all sizes,

small, medium, and large. Once again, these models are for analytical purposes and weren’t designed to

be scaleable for multiple size organizational use, as is. Keep in mind that these break even point models

only factor in a one-time initial investment cost.

Figure 35. Inspection vs. Test Graphical Break Even Analysis

A DACS State-Of-The-Art Report 153

PSP vs. Test

PSP-based SPI methods overtake Test-based SPI methods after 80.58 hours of effort, and then rapidly

dwarf the productivity of Testing (as shown in Figure 36). Note how flat the Testing-based productivity

curve is, and how sharply pronounced the PSP productivity curve is. PSP’s productivity 138.89X greater

than that of Test’s productivity. Keep in mind that the 80.58 hours of initial effort are only for one-time

initial investment costs. PSP’s associated productivity seems to make it the SPI method of choice. It’s

hard to ignore the merits of the PSP’s performance characteristics. Once again, these models are for

analytical purposes, and aren’t designed to be scaleable for multiple size organizational use.

PSP vs. Inspection

Finally, PSP-based SPI methods overtake Inspection-based SPI methods after 81.44 hours of effort, and

then rapidly dwarf the productivity of Inspections, much like PSP performs against Testing (as shown in

Figure 37). But, then remember how close the Inspection and Test graphs were in Figure 35. Once again,

note how flat the Inspection-based productivity curve is, and how sharply pronounced the PSP

productivity curve is. PSP’s productivity 54.35X greater than that of Inspection’s productivity. Keep in

mind that the 81.44 hours of initial effort are only for one-time initial investment costs. And finally don’t

forget, these models are for analytical purposes, and aren’t designed to be scaleable for multiple size

organizational use.

Figure 36. PSP vs. Test Graphical Break Even Analysis

Figure 37. PSP vs .Inspection Graphical Break Even Analysis

Using Cost Benefit Analysis to Develop SPI Strategies154

Cost and Benefit Model

The Cost and Benefit Model is a composite summary of economic analyses as a result of analyzing the

eight SPI strategies, PSP, Clean Room, Reuse, Defect Prevention, Inspections, Testing, CMM, and ISO

9000 (as shown in Table 91).

As explained in the Methodology introduction, the Cost and Benefit Model is a complex composite of

multiple models, most notably the Costs and Benefits of Alternatives (appearing later in this section),

Break Even Point Model, Return-on-Investment Model, and ultimately the Defect Removal Model. The

Cost and Benefit Model, as carefully explained throughout the Methodology, is also composed of a

complex network of predictive empirical statistical parametric cost estimation models. And, of course, the

Cost and Benefit Model is composed of empirically based costs and benefits extracted or derived from

authoritative studies.

The results of Table 91 will be addressed by the Data Analysis chapter, and won’t be explained in detail

here. However, differences between best and worst performers include 1,432X for Break Even Hours,

175X for Training Hours/Person, 40X for Training Cost/Person, 236X for Effort (Hours), 144X for Cycle

Time Reduction, 97X for Productivity Increase, 59X for Quality Increase, and 430X for Return-on-

Investment.

Table 91: Costs and Benefits of Eight Software Process Improvement (SPI) Strategies

PSP Cleanroom Reuse Prevent Inspect Test CMM ISO Average

Breakeven Hours 80 53 8,320 527 7 3,517 10,021 4,973 3,437

Training Hours/Person 80 201 3,316 31 19 78 227 64 502

Training Cost/Person $7,456 $8,089 $298,440 $5,467 $1,794 $13,863 $12,668 $9,475 $44,656

Effort (Hours) 400 3,245 16,212 2,100 836 37,510 94,417 53,800 26,065

Cycle Time Reduction 164.03x 3.53x 3.69x 1.69x 5.47x 6.15x 2.99x 1.14x 23.58x

Productivity Increase 109.49x 4.27x 2.70x 1.88x 5.47x 6.15x 2.92x 1.13x 16.75x

Quality Increase 253.62x 42.22x 4.33x 4.77x 9.00x 5.75x 4.55x 12.44x 42.09x

Return-on-lnvestment 1,290: 1 27: 1 3: 1 75: 1 133: 1 9: 1 6: 1 4: 1 193: 1

Table 92: Costs and Benefits of Personal Software Process (PSP)

ROI Model CMU AIS Motorola Webb Hays SKI Average

Breakeven Hours 80.25 80.25

Training Hours/Person 80 80

Training Cost/Person $995 $13,917 $7,456

Effort (Hours) 400 400

Cycle Time Reduction 326.22x 1.85x 164.03x

Productivity Increase 326.22x 1.07x 1.19x 109.49x

Quality Increase 1,000.00x 4.47x 1.62x 8.40x 253.62x

Return-on-Investment 1,290: 1 1,290: l

A DACS State-Of-The-Art Report 155

Personal Software Process (PSP)

Data for the PSP primarily came from six authoritative sources (as shown in Table 92), the ROI model

(Table 87), Carnegie Mellon University (1999), Ferguson, Humphrey, Khajenoori, Macke, and Matvya

(1997), Webb and Humphrey (1999), Hays and Over (1997), and the Software Engineering Institute

(1998). The ROI model yielded Breakeven Hours of 80.25. The Software Engineering Institute reports

that it takes 80 Training Hours/Person of training for PSP courses I and II, 40 hours each. Training Cost/

Person comes from two sources, $13,917 from the Software Engineering Institute and $995 from

Carnegie Mellon University, for an average of $7,496. The ROI model yielded Effort (Hours) of 400,

based on an input of 10,000 source lines of code (SLOC) into Rico’s (1998) PSP cost model, which was

derived from Hays’ and Over’s study. A Cycle Time Reduction of 326.22X was convincingly yielded by

the ROI model, and 1.85 Hours was reported by Motorola in a study by Ferguson, Humphrey, Khajenoori,

Macke, and Matvya, for an average of 164.03X. A Productivity Increase of 326.22X, once again, was

yielded by the ROI model, while AIS reported a 1.07X Productivity Increase in a study by Ferguson,

Humphrey, Khajenoori, Macke, and Matvya, and Webb and Humphrey came up with a 1.19 Productivity

Increase, for an average of 109.49X. A 1,000X Quality Increase was determined by the ROI Model, AIS

reported a respectable 4.47X Quality Increase, Webb and Humphrey came up with 1.62X, and Hays and

Over had a convincing finding of an 8.4X Quality Increase, for an average of 253.62X. Finally, the ROI

model yielded a phenomenal ROI of 1,290:1. The reason that such a large disparity exists between the

ROI model and the authoritative independent studies is because the ROI model responsibly calculates

total life cycle costs, including software maintenance, while the other studies merely report development

cycle attributes.

Clean Room Methodology

As mentioned earlier, data for Clean Room primarily came from four sources (as shown in Table 93), or

Rosetta Stones as previously stated, McGibbon (1996), Kaplan, Clark, and Tang (1995), Prowell,

Trammell, Linger, and Poor (1999), and Cleanroom Software Engineering (1996). McGibbon and Kaplan,

Clark, and Tang reported approximate Clean Room Breakeven Hours of 42 and 64, for an average of 53

hours. Training Hours/Person were a quite diverse 318 and 84, as reported by the same two studies, for an

average of 201. McGibbon’s training hours were based on a study by the U.S. Army’s Life Cycle

Software Engineering Center at Picatinny Arsenal, New Jersey. Training Cost/Person comes to $12,398

and $3,780, for an average of $8,089, based on the same two studies. McGibbon reported 3,245 Effort

(Hours) and an approximate Cycle Time Reduction of 3.53X. McGibbon also reported a Productivity

Increase of 3.53X, while Cleanroom Software Engineering reports a 5X Productivity Increase, for an

Table 93: Costs and Benefits of Clean Room Methodology

McGibbon Kaplan Prowell CSR Average

Breakeven Hours 42 64 53

Training Hours/Person 318 84 201

Training Cost/Person $12,398 $3,780 $8,089

Effort (Hours) 3,245 3,245

Cycle Time Reduction 3.53x . 3.53x

Productivity Increase 3.53x 5.00x 4.27x

Quality Increase 100.00x 16.67x 10.00x 42.22x

Return-on-lnvestment 33:1 20:1 27:1

Using Cost Benefit Analysis to Develop SPI Strategies156

average of 4.27X. Quality Increases of 100X, 16.67X, and 10X for an average of 42.22X, were reported

by McGibbon, Kaplan, Clark, and Tang, and Cleanroom Software Engineering. McGibbon reported an

impressive 33:1 ROI for Clean Room, while Prowell, Trammell, Linger, and Poor reported a 20:1 ROI,

averaging a good 27:1.

Software Reuse

While core Clean Room data came primarily from McGibbon’s (1996) unique seminal study, Software

Reuse data came from three very authoritative cost and benefit studies (as shown in Table 94), such as

those from McGibbon, Poulin’s (1997) landmark study, and Lim’s (1998) taxonomic study of Software

Reuse. Don’t let the small numbers of primary studies referenced here be deceiving, as Software Reuse

probably has the broadest ranging collection of reported costs and benefits of any single SPI strategy or

method. In fact, after only making brief mention of the plethora of Software Reuse economic studies,

Poulin and Lim go to construct scholarly economic metrics, models, and taxonomies for Software Reuse,

based on the robust set of reported Software Reuse costs and benefits. Once again, while Software Reuse

wasn’t initially targeted for analysis by this study, the Literature Survey uncovered such a rich availability

of cost and benefit data that the economic characteristics of Software Reuse couldn’t be ignored, and had

to be included in the final analysis. Lim starts off the Software Reuse cost and benefit survey by reporting

Breakeven Hours for two Hewlett Packard divisions of $4,160 and $12,480, averaging $8,320. Lim also

reports Training Hours/Person of $450 and $6,182, for an average of $3,316. Lim also provides one of the

most in-depth studies and analyses of Training Cost/Person, at a whopping $40,500 and $556,380,

averaging an uncomfortably high $298,440. McGibbon and Lim report Effort (Hours) of 22,115, 9,360,

and 17,160, for an average of 16,212. A modest 3.33X and 5X Cycle Time Reduction, averaging 3.69X, is

reported by Lim and Poulin. A broader array of Productivity Increases are reported by Poulin and Lim,

including 6.7X, 1.84X, 2X, 1.57X, and 1.4X, for a relatively flat Productivity Increase average of 2.7X.

Quality Increases of 2.8X, 5.49X, 2.05X, and 1.31X, are also revealed by Poulin and Lim, averaging

2.7X. But, probably the most surprisingly low performance indicators were ROI data of 4:1, 4:1, and 2:1,

averaging a convicting 3:1 ROI for Software Reuse.

Table 94: Costs and Benefits of Software Reuse

McGibbon NEC Lim Raytheon DEC Reifer HP HP Average

Breakeven Hours 4,160 12,480 8,320

Training Hours/Person 450 6,182 3,316

Training Cost/Person $40,500 $556,380 $298,440

Effort (Hours) 22,115 9,360 17,160 16,212

Cycle Time Reduction 3.33x 5.00x 1.71x 4.70x 3.69x

Productivity Increase 6.70x 1.84x 2.00x 1.57x 1.40x 2.70x

Quality Increase 2.80x 5.49x l O.OOx 2.05x 1.31x 4.33x

Return-on-lnvestment 4:1 4:1 2:1 3:1

A DACS State-Of-The-Art Report 157

Defect Prevention Process

Data for Defect Prevention came from a six excellent sources (as shown in Table 95), Kaplan, Clark, and

Tang (1995), Gilb (1993), Mays, Jones, Holloway, and Studinski (1990), Humphrey (1989), Grady

(1997), Kajihara (1993), and Latino and Latino (1999). Mays, Jones, Holloway, and Studinski were the

seminal source for works by Kaplan, Clark, and Tang, Gilb, and Humphrey. Kajihara was an original

piece coming from the world-class software laboratories of NEC in Japan. And, finally Latino and Latino

is one of the newest and comprehensive examinations of the dynamics of Defect Prevention, what they

call Root Cause Analysis (RCA), including highly structured economic analyses of Defect Prevention. All

in all, though Defect Prevention was initially perceived to be sorely lacking in data, it turned out to be a

strong SPI method or strategy for cost and benefit analysis. Kaplan, Clark, and Tang, Gilb, and Mays

reported Breakeven Hours of 1,560, 10, and 11, averaging 527 hours. Training Hours/Person were 12, 40,

and 40, averaging 31, as reported by Kaplan, Clark, and Tang, and Latino and Latino. Once again, this

duo reported Training Cost/Person to be $900, $7,500, and $8,000, for an average cost of $5,467. Kaplan,

Clark, and Tang, Gilb, Mays, Jones, Holloway, and Studinski, and Latino and Latino, reported a wide

variety of Effort (Hours), including 4,680, 1,625, 1,747, and 347, averaging 2,100. Two sources, Mays,

Jones, Holloway, and Studinski, and Grady reported Cycle Time Reductions of 2X and 1.37X, averaging a

modest 1.69X. Productivity Increases of 2X and 1.76X, for another modest average of 1.88X, were

reported by Mays, Jones, Holloway, and Studinski, and included Kajihara this time. The most commonly

reported Defect Prevention results were reported for Quality Increase, by Kaplan, Clark, Tang, Mays,

Jones, Holloway, and Studinski, Humphrey, Grady, Kajihara, and Latino and Latino. They ganged up to

report seemingly small Quality Increases of 2X, 2.17X, 4.55X, 4X, 10X, 7X, and 3.67X, averaging

4.77X. ROI came from two principle sources, Gilb and Latino and Latino, reporting 7:1, 40:1, and 179:1.

Latino and Latino gave the most convincing accounts of ROI associated with Defect Prevention, and were

a late addition to this study.

Table 95: Costs and Benefits of Defect Prevention Process

Kaplan Gilb Mays Humphrey Grady Kajihara Latino Latino Average

Breakeven Hours 1,560 10 11 527

Training Hours/Person 12 40 40 31

Training Cost/Person $900 $7,500 $8,000 $5,467

Effort (Hours) 4,680 1,625 1,747 347 2,100

Cycle Time Reduction 2.00x 1.37x 1.69x

Productivity Increase 2.00x 1.76x 1.88x

Quality Increase 2.00x 2.17x 4.55x 4.00x l0.00x 7.00x 3.67x 4.77x

Return-on-lnvestment 7:1 40:1 179:1 75:1

Using Cost Benefit Analysis to Develop SPI Strategies158

Software Inspection Process

Cost and benefit data for Inspections came from eight solid sources (as shown in Table 96), McGibbon

(1996), Fagan (1986), Barnard and Price (1994), Rico (1993), the ROI Model (Table 87), Russell (1991),

Gilb (1993), and Grady (1997). The most significant contributors to Inspection cost and benefit data were

the ROI model designed for this study, which was unexpected, and Grady’s excellent text on SPI showing

total Inspection savings of better than $450 million. The ROI model yielded a convincing Breakeven

Hours average of 7 for Inspection cost models by Barnard and Price, Rico, Russell, Gilb, and Grady.

Training Hours/Person primarily came from McGibbon, Fagan, and Gilb, reporting 12, 24, and 20, for an

insignificant average of 19. The same three sources reported a Training Cost/Person of $468, $2,800, and

$2,114, averaging $1,794. Barnard and Price, Rico, Russell, Gilb, and Grady reported Effort (Hours) of

500, 708, 960, 970, and 1,042, for a modest average of 836. A flat Cycle Time Reduction and Productivity

Increase of 5.47X was the average of 1.55X, 6.77X, 8.37X, 6.54X, 5.17X, 5.13, and 4.84X, from all seven

sources. Quality Increase was a uniform 9X from all sources other than McGibbon and Fagan as primarily

derived from the ROI model. And lastly, McGibbon, Barnard and Price, Rico, Russell, Gilb, and Grady

reported relatively high ROI figures of 72:1, 234:1, 160:1, 114:1, 113:1, and 104:1, averaging a solid

133:1.

Software Test Process

Cost and benefits for Testing came from seven sources (as shown in Table 97), the ROI model (Table 87),

Farren and Ambler (1997), Rice (1999), Yamaura (1998), Graham (1999), Ehrlich, Prasanna, Stampfel,

and Wu (1993), and Asada and Yan (1998). Breakeven Hours were reported to be 135, 5,400, and 5,017

by the ROI model, Ehrlich, Prasanna, Stampfel, and Wu, and Asada and Yan, averaging 3,517. Rice and

Graham reported extensive Training Hours/Person to be 84 and 72, averaging 78, as input into the ROI

model. Training Cost/Person was subsequently derived from Rice and Graham, being $16,800 and

$10,926, for an average of $13,863. Effort (Hours) were quite high at 8,360, 54,000, and 50,170, as

reported or derived by the ROI model, Ehrlich, Prasanna, Stampfel, and Wu, and Asada and Yan,

averaging an astronomical 37,510. Cycle Time Reduction and Productivity Increase were both computed

to be 2.36X, 5X, 3.37X, 10X, and 10X, averaging 6.15X, by the ROI model, Farren and Ambler,

Yamaura, Ehrlich, Prasanna, Stampfel, and Wu, and Asada and Yan. Quality Increase is 3X, 2X, 9X, and

9X, for an average of 5.75X, as reported by the ROI model, Farren and Ambler, Ehrlich, Prasanna,

Stampfel, and Wu, and Asada and Yan. Finally, the same sources yield 10:1, 5:1, 10:1, and 10:1, for a

respectable average ROI of 9:1 for Testing.

Table 96: Costs and Benefits of Software Inspection Process

McGibbon Fagan AT&T ROI Model BNR Gilb HP Average

Breakeven Hours 7 7 7 7 7 7

Training Hours/Person 12 24 20 19

Training Cost/Person $468 $2,800 $2,114 $1,794

Effort (Hours) 500 708 960 970 1,042 836

Cycle Time Reduction 1.55x 6.67x 8.37x 6.54x 5.17x 5.13x 4.84x 5.47x

Productivity Increase 1.55x 6.67x 8.37x 6.54x 5.17x 5.13x 4.84x 5.47x

Quality Increase 9.00x 9.00x 9.00x 9.00x 9.00x 9.00x

Return-on-Investment 72: 1 234: 1 160: 1 114: 1 113: 1 104: 1 133: 1

A DACS State-Of-The-Art Report 159

 Table 97: Costs and Benefits of Software Test Process

ROI Model Farren Rice Yarnaura Graham Ehrlick Asada Average

Breakeven Hours 135 5,400 5,017 3,517

Training Hours/Person 84 72 78

Training Cost/Person $16,800 $10,926 $13,863

Effort (Hours) 8,360 54,000 50,170 37,510

Cycle Time Reduction 2.36x 5.00x 3.37x 10.00x 10.00x 6.15x

Productivity Increase 2.36x 5.00x 3.37x 10.00x 10.00x 6.15x

Quality Increase 3.00x 2.00x 9.00x 9.00x 5.75x

Return-on-Investment 10:1 5:1 10:1 10:1 9:1

Capability Maturity Model (CMM)

Cost and benefit data for the CMM came from seven of the most authoritative sources thus far (as shown

in Table 98), Herbsleb, Carleton, Rozum, Siegel, and Zubrow (1994), Putnam (1993), Haskell, Decker,

and McGarry (1997), Vu (1998), Diaz and Sligo (1997), Haley (1996), and Jones (1997a). Breakeven

Hours are reported to be 2,318, 345, 1,092, and 36,330 by Herbsleb, Carleton, Rozum, Siegel, and

Zubrow, Haskell, Decker, and McGarry, Diaz and Sligo, and Jones, for an average of 10,021. Training

Hours/Person came out to be 64 and 389, according to Herbsleb, Carleton, Rozum, Siegel, and Zubrow

and Jones, for an average of 227. The same two sources reported Training Cost/Person to be $9,820 and

$15,516 for an average of $12,668. Herbsleb, Carleton, Rozum, Siegel, and Zubrow, Haskell, Decker, and

McGarry, Diaz and Sligo, and Jones report Effort (Hours) to be around 23,184, 3,450, 10,920, and

363,298, for a rather large average of 94,417. According to Herbsleb, Carleton, Rozum, Siegel, and

Zubrow, Putnam, Vu, Diaz and Sligo, Haley, and Jones, Cycle Time Reduction is 1.85X, 7.46X, 1.75X,

2.7X, 2.9X, and 1.26X, averaging 2.99X. The same researchers and studies report Productivity Increase to

be 2.89X, 7.46X, 2.22X, 0.80X, 2.9X, 1.26X, averaging 2.92X. And, once again, this same group reports

Quality Increase to be 3.21X, 8.25X, 5X, 2.17X, 3X, and 5.68X, for a noticeable average of 4.55X. Only,

Herbsleb, Carleton, Rozum, Siegel, and Zubrow, Diaz and Sligo, and Haley reported ROI of 5:1, 4:1, and

8:1, for a decent average of 6:1. As a special metric, all studies, except Putnam’s, reported Years to SEI

Level 3 as 3.5, 7, 5, 3, 7, and 3.56, for a significant average of 4.84.

Table 98: Costs and Benefits of Capability Maturity Model (CMM)

Herbsleb Putnam Haskell Vu Diaz Haley Jones Average

Breakeven Hours 2,318 345 1,092 36,330 10,021

Training Hours/Person 64 389 227

Training Cost/Person $9,820 $15,516 $12,668

Effort (Hours) 23,184 3,450 10,920 363,298 94,417

Cycle Time Reduction 1.85x 7.46x 1.75x 2.70x 2.90x 1.26x 2.99x

Productivity Increase 2.89x 7.46x 2.22x 0.80x 2.90x 1.26x 2.92x

Quality Increase 3.21x 8.25x 5.00x 2.17x 3.00x 5.68x 4.55x

Return-on-Investment 5:1 4:1 8:1 6:1

Years to SKI Level 3 3.50 7.00 5.00 3.00 7.00 3.56 4.84

Using Cost Benefit Analysis to Develop SPI Strategies160

ISO 9000

Cost and benefit data for ISO 9000 came from eight primary sources (as shown in Table 99), Roberson

(1999), Hewlett (1999), Armstrong (1999), Russo (1999), Kaplan, Clark, and Tang (1995), Haskell,

Decker, and McGarry (1997), Garver (1999), and El Emam and Briand (1997). Breakeven Hours were

reported to be a rather large 4,160, 10,400, and 360 by Roberson, Kaplan, Clark, and Tang, and Haskell,

Decker, and McGarry, averaging 4,973. Armstrong, Russo, and Haskell, Decker, and McGarry report

Training Hours/Person to be 88, 24, and 80, for an average of 64. Training Cost/Person, from the same

studies, comes out to be $8,775, $12,650, and $7,000. According to Kaplan, Clark, and Tang and Haskell,

Decker, and McGarry, Effort (Hours) are 104,000 and 3,600, averaging an eye opening 53,800. Roberson

reports Cycle Time Reduction to be 1.14X. Productivity Increase is reported to be 1.14X and 1.11X,

averaging a small 1.13X by Roberson and Hewlett. Quality Increase is reported to be 1.22X, 1.11X, and

35X for a significant 12.44X average. Kaplan, Clark, and Tang and Haskell, Decker, and McGarry report

numbers of 1:1 and 7:1, averaging a respectable 4:11 ROI. Finally, Haskell, Decker, and McGarry were

able to get a CSC unit ISO 9000 Registered after only one year, while El Emam and Brian find an average

of 2.14 years for ISO 9000 Registration.

Table 99: Costs and Benefits of ISO 9000

Roberson Hewlett Armstrong Russo Kaplan Haskell Garver El Emam Average

Breakeven Hours 4,160 10,400 360 4,973

Training Hours/Person 88 24 80 64

Training Cost/Person $8,775 $12,650 $7,000 $9,475

Effort (Hours) 104,000 3,600 53,800

Cycle Time Reduction 1.14x 1.14x

Productivity Increase 1.14x l.l lx 1.13x

Quality Increase 1.22x l.l lx 35.00x 12.44x

Return-on-lnvestment 1: 1 7:1 4: 1

Years to ISO 9001 1.00 2.14 1.57

A DACS State-Of-The-Art Report 161

Data Analysis

This chapter sets forth to analyze, evaluate, and interpret the results of the Methodology, primarily the

Cost and Benefit Model depicted by Table 91, which was identified as a key part of satisfying the

objectives of this study. The Data Analysis will provide the reader with an interpretive analysis of the

costs and benefits of the eight SPI strategies, PSP, Clean Room, Reuse, Defect Prevention, Inspection,

Testing, CMM, and ISO 9000 (as shown in Table 100).

Table 100: Normalized Costs and Benefits of Eight Strategies

PSP Cleanroom Reuse Prevent Inspect Test CMM ISO Average

Breakeven Hours 9 97 9.98 6.97 9.81 10.00 8.72 6.36 8.19 8.75

Training Hours/Person 9.80 9.50 1.74 9.92 9.95 9.81 9.44 9.84 8.75

Training Cost/Person 9.79 9.77 1.65 9.85 9.95 9.61 9.65 9.73 8.75

Effort (Hours) 9.98 9.84 9.22 9.90 9.96 8.20 5.47 7.42 8.75

Cycle Time Reduction 8.69 0.19 0.20 0.09 0.29 0.33 0.16 0.06 1.25

Productivity Increase 8.17 0.32 0.20 0.14 0.41 0.46 0.22 0.08 1.25

Quality Increase 7.53 1.25 0.13 0.14 0.27 0.17 0.14 0.37 1.25

Return-on-lnvestment 8.34 0.17 0.02 0.49 0.86 0.06 0.04 0.03 1.25

72.28 41.03 20.13 40.34 41.68 37.35 31.46 35.73

Table 100 normalizes the Cost and Benefit Criteria values for each of the eight SPI strategies against one

another, based on the raw data in Table 91. While the raw cost and benefit data in Table 91 is interesting

and useful, normalized representations of the data will aid in rapid comprehension and interpretive

analysis of the costs and benefits of the eight SPI strategies. Since costs are considered undesirable,

normalization for the costs was computed by inverting the raw criterion value divided by the sum of all

the values for the given criterion, and multiplying the result by 10. Since benefits are considered

desirable, normalization for the benefits was computed by dividing the raw criterion value by the sum of

all the values for the given criterion, and multiplying the result by 10. The normalization technique, as

described here, yields a table populated with uniform data values between 0 and 10, for rapid

comprehension and analysis. Low numbers are considered poor, and high numbers are considered better.

The criterion values for each SPI strategy were also summed vertically, in order to yield an overall score

that could be used for comparing the SPI strategies themselves very simply.

Several preliminary results seem to be evident from Table 100 and Figure 38, little variation seems to

exist between costs, and wide disparity exists between the benefits. The PSP scores values near ten for

each of its costs and scores near eight and nine for each of its benefits. Clean Room scored near ten for

each of its costs, but scored well under one for each of its benefits. Reuse scored the worst for cost and

near zero for its benefits. Defect Prevention scored extremely well for its costs, but surprisingly low for its

benefits. Inspection scored the only ten for costs or benefits, scoring around 0.5 for most of its benefits.

Test also scored well for costs and low for benefits. CMM scored moderately for cost and low for

benefits. ISO 9000 scored well for costs, but probably worst for benefits. Several results became

immediately visible from these analyses, costs, at least identified by this study don’t seem to be a

differentiator, and the PSP benefits seem to dwarf the benefits of the other seven SPI strategies.

Using Cost Benefit Analysis to Develop SPI Strategies162

Cost/Benefit-Based Comparison of Alternatives

A composite graph averaging all of the costs and benefits together for each SPI strategy and then

comparing them to one another seems to yield some useful comparative analyses (as shown in Figure 39).

Overall, this analysis seems to indicate uniformity in the average costs and benefits for each SPI strategy,

and may mislead one to assert that any SPI strategy is the right one. Table 100, Figure 38, and later

analyses will reveal that the seeming uniformity in costs and benefits is largely due to the homogeneity of

the costs, and any differentiation is due to disparity in the benefits. This analysis reveals a modest factor

of 3.59X between the best and worst performer, PSP and Reuse. Aside from PSP, the difference between

the best and worst performer is a factor of 2X, Inspection and Reuse. The overall costs and benefits of

Clean Room, Defect Prevention, Inspection, Test, CMM, and ISO 9000 seem to be surprisingly uniform.

Following is a closer look at each of the individual criterion, in order to highlight differentiation between

costs and benefits for each of the SPI strategies.

Figure 38. Normalized Cost and Benefits of Eight Strategies

Figure 39. Average Cost and Benefits of Eight Strategies

A DACS State-Of-The-Art Report 163

Breakeven Hours

Normalized values for Breakeven Hours range from six to near ten for as many as four of the SPI

strategies (as shown in Figure 40). Breakeven Hours from left to right are 9.97, 9.98, 6.97, 9.81, 10, 8.72,

6.36, and 8.19, for an average of 8.75. Inspection is the best and CMM is the worst in this analysis. The

difference between best and worst is a factor of 1.43X.

Training Hours/Person

Normalized values for Training Hours/Person range from just under two to near ten for as many as seven

of the SPI strategies (as shown in Figure 41). Training Hours/Person from left to right are 9.8, 9.5, 1.74,

9.92, 9.95, 9.81, 9.44, and 9.84, for an average of 8.75. Inspection is the best and Reuse is the worst in

this analysis. The difference between best and worst is a factor of 5.72X.

Figure 40. Breakeven Hours Comparison of Eight Strategies

Figure 41. Training Hours/Person Comparison of Eight Strategies

Using Cost Benefit Analysis to Develop SPI Strategies164

Figure 42. Training Cost/Person Comparison of Eight Strategies

Training Cost/Person

Normalized values for Training Cost/Person once again range from just under two to near ten for as many

as seven of the SPI strategies (as shown in Figure 42). Training Cost/Person from left to right is 9.79,

9.77, 1.65, 9.85, 9.95, 9.61, 9.65, and 9.73, for an average of 8.75. Once again, Inspection is the best and

Reuse is the worst in this analysis. The difference between best and worst is a factor of 6.03X. The

technique of collecting consultant costs for both Training Hours/Person and Training Cost/Person was

most likely responsible for the uniformity in most of the values, as well as the disparity in the case of

Reuse. Consulting costs seem to be relatively uniform, despite the SPI strategy, for competitive reasons,

while Reuse costs were derived from McGibbon’s (1996) study factoring in life cycle considerations.

Effort (Hours)

Normalized values for Effort (Hours) range from around five to near ten for as many as four of the SPI

strategies (as shown in Figure 43). Effort (Hours) from left to right are 9.98, 9.84, 9.22, 9.9, 9.96, 8.2,

5.47, and 7.42, for an average of 8.75. PSP is the best and CMM is the worst in this analysis. The

difference between best and worst is a factor of 1.82X. This normalization technique seems to be hiding

some significant differentiation between criterion values, so the raw values in Table 91 should be analyzed

and compared as well.

A DACS State-Of-The-Art Report 165

Cycle Time Reduction

Normalized values for Cycle Time Reduction range from near zero to around nine for the PSP (as shown

in Figure 44). Cycle Time Reduction from left to right is 8.69, 0.19, 0.20, 0.09, 0.29, 0.33, 0.16, and 0.06,

for an average of 1.25. PSP is the best and ISO 9000 is the worst in this analysis. The difference between

best and worst is a factor of 145X.

Figure 43. Effort (Hours) Comparison of Eight Strategies

Figure 44. Cycle Time Reduction Comparison of Eight Strategies

Using Cost Benefit Analysis to Develop SPI Strategies166

Productivity Increase

Normalized values for Productivity Increase range from near zero to around eight for the PSP (as shown

in Figure 45). Productivity Increase from left to right is 8.17, 0.32, 0.20, 0.14, 0.41, 0.46, 0.22, and 0.08,

for an average of 1.25. PSP is the best and ISO 9000 is the worst in this analysis. The difference between

best and worst is a factor of 102X. What’s now becoming evident is that the PSP’s benefits seem to be

outweighing the benefits of the other seven SPI strategies by two orders of magnitude. Rather than let this

singular result dominate and conclude this study, it is now becoming evident that PSP performance will

have to be duely noted, and its data segregated for further analyses and evaluation of SPI strategy costs

and benefits. One thing however, the PSP’s excellent performance was not predicted going into this study.

Further detailed analyses of the PSP’s performance may be found in the ROI Model.

Quality Increase

Normalized values for Quality Increase range from near zero to under eight for the PSP (as shown in

Figure 46). Quality Increase from left to right is 7.53, 1.25, 0.13, 0.14, 0.27, 0.17, 0.14, and 0.37, for an

average of 1.25. PSP is the best and Reuse is the worst in this analysis. The difference between best and

worst is a factor of 58X.

Figure 45. Productivity Increase Comparison of Eight Strategies

A DACS State-Of-The-Art Report 167

Return-on-Investment

Normalized values for Return-on-Investment range from near zero to just over eight for the PSP (as

shown in Figure 47). Return-on-Investment from left to right is 8.34, 0.17, 0.02, 0.49, 0.86, 0.06, 0.04,

and 0.03, for an average of 1.25. PSP is the best and Reuse is the worst in this analysis. The difference

between best and worst is a factor of 417X.

As mentioned earlier, these analyses revealed little differentiation in the costs and wide disparity in the

benefits. The following sections and analyses were created to highlight differentiation between strategies

that was not evident in the first round of analyses.

However, these analyses have revealed some significant findings. Inspection dominated the first three cost

criteria with performances of 1.43X, 5.72X, and 6.03X, for an average 4.39X better than the worst

performer. There is a correlation between these criteria in that they are all related to training costs, which

are reported to be the lowest for Inspections

Figure 46. Quality Increase Comparison of Eight Strategies

Figure 47. Return-on-Invesment Comparison of Eight Strategies

Using Cost Benefit Analysis to Develop SPI Strategies168

Table 101: Normalized Benefits of Eight Strategies

PSP Cleanroom Reuse Prevent Inspect Test CMM ISO Average

Cycle Time Reduction 8.69 0.19 0.20 0.09 0.29 0.33 0.16 0.06 1.25

Productivity Increase 8.17 0.32 0.20 0.14 0.41 0.46 0.22 0.08 1.25

Quality Increase 7.53 1.25 0.13 0.14 0.27 0.17 0.14 0.37 1.25

Return-on-Investment 8.34 0.17 0.02 0.49 0.86 0.06 0.04 0.03 1.25

32.74 1.93 0.55 0.86 1.82 1.01 0.55 0.54

The PSP seems to have taken over from where Inspections left off. PSP dominated the final five criteria

with performances of 1.82X, 145X, 102X, 58X, and 417X, for an average of 145X better than the worst

performers. The explanation for the PSP’s performance lies in two factors, the dominant productivity, and

subsequently total life cycle cost over the other methods as revealed by the ROI Model, and that the PSP

yields phenomenally high quality, resulting in near zero software maintenance costs (at least to repair

defects).

But, these analyses really hide the merits of the other six SPI strategies, Clean Room, Reuse, Defect

Prevention, Test, CMM, and ISO 9000. Further analyses will highlight the costs and benefits of these SPI

strategies as well. Overall Inspection benefits are also hidden in the outstanding performance of the PSP.

Further analyses will also highlight the benefits of Inspections. So much so, that it will be necessary to

segregate out Inspection data and analyses in order to fully comprehend the benefits of the other SPI

strategies in greater detail.

Benefit-Based Comparison of Alternatives

This section is designed to focus on, highlight, and further analyze only the “benefits” of the eight SPI

strategies, PSP, Clean Room, Reuse, Defect Prevention, Inspection, Test, CMM, and ISO 9000, from

Tables 100, and subsequently Table 91 (as shown in Table 101).

The preliminary Data Analysis revealed uniformity, homogeneity, and non-differentiation among the

costs. Therefore, it is now necessary to begin focusing on the benefits of the eight SPI strategies. Now,

differentiation between the SPI strategies hidden in the mire of Figure 38 and the averaging found in

Figure 39 starts to become evident (as shown in Figure 48).

Table 100 and Figure 48 reveal two items of interest, the benefits of the PSP overwhelm the benefits of

the remaining seven SPI strategies, and there exists further differentiation among the Clean Room, Reuse,

Defect Prevention, Inspection, Test, CMM, and ISO, that needs to be examined in greater detail later.

A DACS State-Of-The-Art Report 169

Figure 49 is a composite average of benefits for PSP, Clean Room, Reuse, Defect Prevention, Inspection,

Test, CMM, and ISO 9000, from Table 101 and Figure 48. Figure 49 shows that the average PSP benefits

outperform the benefits of the other seven SPI strategies by a factor of 31.57X, while the factor between

the PSP and the worst SPI strategy is a factor of 59.53X. In fact, Figure 49 shows that the difference

between the worst PSP criterion and the best non-PSP criterion is a factor of 5.02X. PSP’s Cycle Time

Reduction is 46.6X greater than an average of the others. PSP’s Productivity Increase is 31.28X greater.

PSP’s Quality Increase is 21.37X greater. And, PSP’s Return-on-Investment is 35.25X greater. Figure 49

does reveal a 3.51X difference between the best and worst non-PSP SPI strategy.

Figure 48. Normalization Benefits of Eight Strategies

Figure 49. Average Benefits of Eight Strategies

Using Cost Benefit Analysis to Develop SPI Strategies170

Benefit-Based Comparison of Worst Alternatives

This section is designed to analyze and evaluate the benefits of the seven worst SPI strategies according to

the Methodology, Clean Room, Reuse, Defect Prevention, Inspection, Test, CMM, and ISO 9000, by

masking out the PSP (as shown in Table 102).

Table 102: Normalized Benefits of Worst Strategies

Cleanroom Reuse Prevent Inspect Test CMM ISO Average

Cycle Time Reduction 1.43 1.50 0.68 2.22 2.49 1.21 0.46 1.43

Productivity Increase 1.74 1.10 0.77 2.23 2.51 1.19 0.46 1.25

Quality Increase 5.08 0.52 0.57 1.08 0.69 0.55 1.50 1.25

Return-on-Investment 1.03 0.13 2.94 5.18 0.34 0.22 0.15 1.25

9.29 3.25 4.97 10.71 6.04 3.17 2.57

The PSP’s benefits exhibited by Table 101, Figure 48, and Figure 49, previously dwarfed the benefits of

the seven worst SPI strategies, necessitating the design of Table 102. This analysis reveals greater

differentiation between these strategies, exhibiting high scores for Inspection and Clean Room,

surprisingly mediocre scores for Defect Prevention, surprisingly high scores for Test, and low scores for

Reuse, CMM, and ISO 9000 (as shown in Figure 50).

Figure 50. Normalized Benefits of Worst Strategies

A DACS State-Of-The-Art Report 171

A composite picture of the benefits of the seven worst SPI strategies, Clean Room, Reuse, Defect Prevention,

Inspection, Test, CMM, and ISO 9000, provides useful analysis for determining the overall strengths of each

SPI strategy (as shown in Figure 51).

Figure 51 reveals that Inspection has the best overall benefit average, followed closely by Clean Room, and

then Test, Defect Prevention, Reuse, CMM, and ISO 9000. Inspection outpaces Clean Room by 1.15X, Test

by 1.77X, Defect Prevention by 2.15X, Reuse by 3.3X, CMM by 3.38X, and ISO 9000 by 4.17X.

Test seems to have the best Cycle Time Reduction and Productivity Increase, Clean Room has the best

Quality Increase, and Inspection has the best Return-on-Investment of this group. Inspection’s high

Return-on-Investment and good performance in Cycle Time Reduction and Productivity propel

Inspections to the top of this analysis.

It’s somewhat surprising that Reuse and Defect Prevention are performing so poorly in this analysis, and

that CMM and ISO 9000 seem to be performing so well. Reflecting on the Cost and Benefit model recalls

authoritative data for Defect Prevention, but scant data for ISO 9000.

Figure 51. Average Benefits of Worst Strategies

Using Cost Benefit Analysis to Develop SPI Strategies172

Benefit-Based Comparison of Poorest Alternatives

Once again, the overarching and overshadowing benefits of a few SPI strategies, Clean Room and

Inspection, overshadow the benefits of the poorest SPI strategies, Reuse, Defect Prevention, Test, CMM,

and ISO 9000, demanding a closer examination and comparative analyses of these alternatives (as shown

in Table 103).

Table 103: Normalized Benefits of Poorest Strategies

Reuse Prevent Test CMM ISO Average

Cycle Time Reduction 2.36 1.08 3.93 1.91 0.73 2.00

Productivity Increase 1.83 1.27 4.16 1.98 076 2.00

Quality Increase 1.36 1.5 1.81 1.43 3.91 2.00

Return-on-Investment 0.34 7.78 0.90 0.58 0.40 2.00

5.88 11.62 10.80 5.90 5.80

Table 103 highlights the strengths of Test for Cycle Time Reduction and Productivity Increase, and

relative parity among these criteria for Reuse, Defect Prevention, and CMM. ISO 9000 comes out on top

for Quality Increase, with parity for Reuse, Defect Prevention, Test, and CMM. Defect Prevention has a

towering Return-on-Investment as show in Figure 52).

Figure 52. Normalized Benefits of Poorest Strategies

A DACS State-Of-The-Art Report 173

A composite graph of the benefits of the five poorest SPI strategies, Reuse, Defect Prevention, Test,

CMM, and ISO 9000, provides useful analysis for determining the overall strengths of each SPI strategy

(as shown in Figure 53).

Figure 53 reveals that Defect Prevention has the best overall benefit average, followed closely by Test,

and then CMM, Reuse, and ISO 9000. Defect Prevention outperforms Test by only 1.08X, CMM by

1.97X, Reuse by 1.98X, and ISO 9000 by 2X.

While Test does better than Defect Prevention in three out of four criteria, Defect Prevention does come

out on top of this analysis. However, a composite of their average benefits places them on par, and reveals

that they are an average of 2X better than the other three SPI strategies, CMM, Reuse, and ISO 9000.

Reuse is performing much worse than anticipated at the outset of this study. While Reuse, wasn’t targeted

for initial analysis, Reuse cost and benefit data revealed by the Literature Survey made Reuse a natural

candidate for inclusion in the analyses. However, Reuse was expected to perform better than the Vertical

Process and Indefinite SPI strategies, which is largely attributed to the way Reuse training costs are

computed.

Cost/Benefit-Based Comparison of Categories

This section is designed to analyze the costs and benefits, not of individual SPI strategies, but the three

classes of SPI strategies referred to throughout this study as Vertical Life Cycle, Vertical Process, and

Indefinite. Vertical Life Cycle SPI strategies included the PSP, Clean Room, and Reuse, Vertical Process

SPI strategies included Defect Prevention, Inspection, and Test, and Indefinite SPI strategies included

CMM and ISO 9000. Vertical Life Cycle, Vertical Process, and Indefinite strategy costs and benefits are

analyzed here (as shown in Table 104).

Figure 53. Average Benefits of Poorest Strategies

Using Cost Benefit Analysis to Develop SPI Strategies174

There are two interesting points to ponder about this analysis in Table 104, validity and significance. As

for validity, it is theorized that the costs and benefits of Vertical Life Cycle SPI strategies would be

superior because of increased efficiencies due to comprehensiveness. Vertical Process SPI strategies were

theorized to be fast, streamlined, and highly efficient. And, Indefinite SPI strategies were hypothesized to

fail in all criteria. The fundamental question is whether this classification is valid. After much analysis,

the answer is a resounding “yes.” PSP’s costs, benefits, and efficiencies are overwhelming, though the

PSP was not initially anticipated to exhibit these properties as strongly as it has. And, Clean Room and

Reuse are much broader life cycle approaches, though clearly not as efficient and effective as PSP. The

Vertical Process SPI strategies ended up much better than expected, behind strong performances in

Return-on-Investment and low initial investment costs (at least as computed by this study). Indefinite SPI

strategies performed extremely well, despite the fact that they were expected to perform extremely badly.

Indefinite SPI strategies may have been helped by cost and benefit data that may have actually applied

Vertical Process SPI strategies, along side the Indefinite approaches. This may have biased this study in

favor of the Indefinite approaches, but not enough to overcome the raw power of the Vertical Life Cycle

and Vertical Process SPI strategies. As for significance, the overwhelming cost and benefit efficiencies of

PSP and Inspection over Indefinite SPI strategies increases the significance of this analysis, and highlights

the continuing role of Vertical Process SPI strategies in the 21st century.

Cost and benefit data for the SPI categories in Table 104 were normalized to facilitate further analysis (as

shown in Table 105 and Figure 54). Cost normalization was computed by inverting the raw criterion value

divided by the sum of all the values for the given criterion, and multiplying the result by 10. Benefit

normalization was computed by dividing the raw criterion value by the sum of all the values for the given

criterion, and multiplying the result by 10.

Table 104: Costs and benefits of Categories

Vertical Life Vertical Indefinite

Cycle Process

Breakeven Hours 2,818 1,350 7,497

Training Hours/Person 1,199 42 145

Training Cost/Person $104,662 $7,041 $11,072

Effort (Hours) 6,619 13,482 74,108

Cycle Time Reduction 57.08x 4.43x 2.06x

Productivity Increase 38.82x 4.50x 2.02x

Quality Increase 100.06x 6.51x 8.50x

Return-on-Investment 440:1 72:1 5:1

Table 105: Normalized Costs and Benefits of Categories

Vertical Life Vertical Indefinite

Cycle Process

Breakeven Hours 7.58 8.84 3.57

Training Hours/Person 1.35 9.69 8.95

Training Cost/Person 1.48 9.43 9.10

Effort (Hours) 9.30 8.57 2.13

Cycle Time Reduction 8.98 0.70 0.32

Productivity Increase 8.56 0.99 0.45

Quality Increase 8.70 0.57 0.74

Return-on-Investment 8.51 1.40 0.09

54.46 40.18 25.36

A DACS State-Of-The-Art Report 175

Breakeven Hours

Normalized values for Breakeven Hours range from near four to about nine for the SPI categories (as

shown in Table 105 and Figure 54). Breakeven Hours from left to right are 7.58, 8.84, and 3.57. Vertical

Process is the best and Indefinite is the worst in this analysis. The difference between best and worst is a

factor of 2.39X.

Training Hours/Person

Normalized values for Training Hours/Person range from about one to nearly ten for the SPI categories

(as shown in Table 105 and Figure 54). Training Hours/Person from left to right are 1.35, 9.69, and 8.95.

Vertical Process is the best and Vertical Life Cyle is the worst in this analysis. The difference between best

and worst is a factor of 7.18X. The auspicious and unusually high training costs for Clean Room and

Reuse as derived by this study biased this analysis against Vertical Life Cycle strategies.

Training Cost/Person

Normalized values for Training Cost/Person range from near two to almost ten for the SPI categories (as

shown in Table 105 and Figure 54). Training Cost/Person from left to right is 1.48, 9.43, and 9.10. Vertical

Process is the best and Vertical Life Cycle is the worst in this analysis. The difference between best and

worst is a factor of 6.37X. Once again, the unusual source values for this analysis require caution in

interpreting these results.

Effort (Hours)

Normalized values for Effort (Hours) range from near two to nine for the SPI categories (as shown in Table

105 and Figure 54). Effort (Hours) from left to right are 9.30, 8.57, and 2.13. Vertical Life Cycle is the best

and Indefinite is the worst in this analysis. The difference between best and worst is a factor of 4.37X.

Figure 54. Normalized Costs and Benefits of Categories

Using Cost Benefit Analysis to Develop SPI Strategies176

Cycle Time Reduction

Normalized values for Cycle Time Reduction range from near zero to nine for the SPI categories (as

shown in Table 105 and Figure 54). Cycle Time Reduction from left to right is 8.98, 0.70, and 0.32.

Vertical Life Cycle is the best and Indefinite is the worst in this analysis. The difference between best and

worst is a factor of 28.06X. Vertical Process faired nearly as badly as Indefinite.

Productivity Increase

Normalized values for Productivity Increase range from near zero to nine for the SPI categories (as shown

in Table 105 and Figure 54). Productivity Increase from left to right is 8.56, 0.99, and 0.45. Vertical Life

Cycle is the best and Indefinite is the worst in this analysis. The difference between best and worst is a

factor of 19.02X. Vertical Process faired nearly as badly as Indefinite.

Quality Increase

Normalized values for Quality Increase range from almost one to about nine for the SPI categories (as

shown in Table 105 and Figure 54). Quality Increase from left to right is 8.7, 0.57, and 0.74. Vertical Life

Cycle is the best and Vertical Process is the worst in this analysis. The difference between best and worst

is a factor of 15.26X. Indefinite faired nearly as badly as Vertical Process.

Return-on-Investment

Normalized values for Return-on-Investment range from near zero to about nine for the SPI categories (as

shown in Table 105 and Figure 54). Return-on-Investment from left to right is 8.51, 1.4, and 0.09. Vertical

Life Cycle is the best and Indefinite is the worst in this analysis. The difference between best and worst is

a factor of 94.56X. Vertical Process was nearly as unimpressive as Indefinite.

A composite of overall cost and benefits for the three SPI categories, Vertical Life Cycle, Vertical Process,

and Indefinite, exhibits greater parity between them (as shown in Figure 55). Vertical Life Cycle SPI

strategies are 1.36X better than Vertical Process, and 2.15X better than Indefinite, according to this study

and analysis. And, Vertical Process SPI strategies are 1.58X better than Indefinite, according to this study.

Figure 55. Average Costs and Benefits of Categories

A DACS State-Of-The-Art Report 177

The results of this analysis were not completely unexpected, as Vertical Life Cycle was expected to

outperform Vertical Process and Indefinite, and it did. Vertical Process was expected to outperform

Indefinite, and it did. And, it is not even surprising that there wasn’t greater differentiation in the

composite averages for each of the categories. This study will need to focus on the benefits of the

categories, as well as segregate off the Vertical Life Cycle data.

Benefit-Based Comparison of Categories

Comparison of both the costs and benefits of Vertical Life Cycle, Vertical Process, and Indefinite SPI

strategies suffered from the same dilemma as the earlier analysis did, parity and perhaps even

insignificance of the costs associated with the SPI categories. Therefore, this section is designed to focus

the readers attention on the benefits of the Vertical Life Cycle, Vertical Process, and Indefinite SPI

strategies (as shown in Table 106).

These are the same benefits found in Table 105. Table 106 indicates that PSP has a 9.52X benefit

advantage over Vertical Process, and a 21.72X advantage over Indefinite. These normalized values are

very revealing (as illustrated in Figure 56).

Figure 56. Normalized Benefits of Categories

 Table 106: Normalized Benefits of Categories

Vertical Life Vertical Indefinite

Cycle Process

Cycle Time Reduction 8.98 0.70 0.32

Productivity Increase 8.56 0.99 0.45

Quality Increase 8.70 0.57 0.74

Return-on-Investment 8.51 1.40 0.09

34.75 3.65 1.60

Using Cost Benefit Analysis to Develop SPI Strategies178

Figure 56 emphasizes the vast difference in benefits between Vertical Life Cycle SPI strategies, and

Vertical Process and Indefinite SPI strategies. This analysis reveals that there is much less parity and

equality between the SPI categories than previously implied by Figure 55. This chasm between the

benefits of Vertical Life Cycle SPI strategies and the others was not anticipated (as shown in Figure 57).

The composite benefits of the Vertical Life Cycle SPI category tower over the others. The average

benefits of the Vertical Process and Indefinite SPI categories look almost uninteresting. But this is

deceiving as will be later revealed.

Once again, the overwhelming benefits of the Vertical Life Cycle SPI category weren’t anticipated at the

outset of this study. But, even more surprising was the reasonably good benefit performance of the

Indefinite SPI category, and the surprisingly even performance between the Vertical Process and

Indefinite SPI categories.

The remainder of the analysis will focus on comparing the benefits of the Vertical Process and Indefinite

SPI categories. Further analysis will prove interesting and valuable.

Figure 57. Average Benefits of Categories

Table 107: Normalized Benefits of

Worst Categories (Part I)

Vertical Indefinite

Process

Cycle Time Reduction 6.82 3.18

Productivity Increase 6.90 3.10

Quality Increase 4.34 5.66

Return-on-Investment 9.38 0.62

27.44 1 2.56

A DACS State-Of-The-Art Report 179

There is definitely greater differentiation between the benefits of Vertical Process and Indefinite SPI

categories than revealed by Table 106, Figure 56, and Figure 57 (as shown in Table 107). The advantages

for the Vertical Process over the Indefinite category include 2.14X for Cycle Time Reduction, 2.23X for

Productivity Increase, and 15.13X for Return-on-Investment. Very surprisingly, the Indefinite category did

have one advantage over the Vertical Process category, a 1.3X for Quality Increase. This was probably

due to a single questionable quality value reported for ISO 9000. Overall, the Vertical Process Category

has a 2.18X advantage over the Indefinite category (as illustrated in Figure 58).

Figure 58. Normalized Benefits of Worst Categories (Part I)

A composite average of the benefits for Vertical Process and Indefinite SPI categories does reveal a strong

advantage for the Vertical Process category (as shown in Figure 59).

Figure 59. Average Benefits of Worst Categories (Part I)

Using Cost Benefit Analysis to Develop SPI Strategies180

Once again, Quality Increase data for the Vertical Process category was very strong and authoritative,

ensuring a valid result in this area. However, ISO 9000 actually had sparse quantitative data available, and

there is little confidence in the Quality Increase value reported for the Indefinite category. Return-on-

Investment results seem to skew the final evaluation, demanding segregation of this data element for final

evaluation. Therefore a final analysis without Return-on-Investment data was designed in order to support

full evaluation of the benefits involving Vertical Process versus Indefinite SPI categories (as shown in

Table 108).

Table 108 still exhibits a substantial advantage for the Vertical Process SPI category over the Indefinite

SPI category, even without Return-on-Investment. The Vertical Process SPI category still holds a 2.18X

advantage over the Indefinite SPI category for Cycle Time Reduction and Productivity Increase (as shown

in Figure 60).

Table 108: Normalized Benefits of

Worst Categories (Part II)

Vertical Indefinite

Process

Cycle Time Reduction 6.82 3.18

Productivity Increase 6.90 3.10

Quality Increase 4.34 5.66

1 8.06 1 1.94

Figure 60. Normalized Benefits of Worst Categories (Part II)

A DACS State-Of-The-Art Report 181

And, finally, the composite average for Vertical Process and Indefinite SPI categories concludes the Data

Analysis for this study (as illustrated in Figure 61).

Figure 61. Average Benefits of Worst Categories (Part II)

Using Cost Benefit Analysis to Develop SPI Strategies182

Conclusion

As stated in the title, this study involved “Using Cost Benefit Analyses to Develop a Pluralistic

Methodology for Selecting from Multiple Prescriptive Software Process Improvement (SPI) Strategies.”

Rather simply, this study identified as many step-by-step SPI strategies that could be conclusively

analyzed based on cost and benefit data, in order to help software managers and engineers in choosing SPI

strategies, or at least understanding the behavioral economics of the SPI strategies that they currently

employ.

While, it was hoped that more SPI strategies could be conclusively analyzed, such as the Team Software

Process (TSP), Orthogonal Defect Classification (ODC), Software Process Improvement and Capability

dEtermination (SPICE), IEEE 12207, Configuration Management (CM), or Malcolm Baldrige National

Quality Award (MBQNA), we are satisfied with what was accomplished. In fact, eight well-known SPI

strategies were quite impressively analyzed, Personal Software Process (PSP), Clean Room, Reuse,

Defect Prevention, Inspection, Test, Capability Maturity Model (CMM), and ISO 9000. Not only are we

sufficiently satisfied that an authoritative base of SPI strategies were identified and analyzed, but that this

study accomplished a uniquely quantitative study of this magnitude for the first time (as known by this

author). While the SPI strategies, data, models, conclusions, and fidelity were less than perfect, it is

believed that this study substantially forwards the state-of-the-art in SPI strategy economic analyses,

especially with respect to the Personal Software Process (PSP).

An exhaustive Literature Review was attempted for several reasons, identify an authoritative body of SPI

strategies, metrics and models for evaluating SPI strategies, SPI strategy costs and benefits for later

analyses, and most importantly, a suitable methodology for evaluating the economics of SPI strategies.

While, the Literature Review accomplished all of these goals and objectives, it is believed that a primary

accomplishment is the design of the Methodology, which can continue to be populated with SPI strategy

costs and benefits.

As mentioned before, the Literature Survey was instrumental in identifying Clean Room and Reuse costs

and benefits, thus making the decision to include these SPI strategies in this study. The other six SPI

strategies, PSP, Defect Prevention, Inspection, Test, CMM, and ISO 9000 were already selected in

advance for economic analyses. More SPI strategies that would have been valuable would have included

Experience Factory, Goal Question Metric (GQM), Statistical Process Control (SPC), Product Line

Management, Initiating, Diagnosing, Establishing, Acting & Learning (IDEAL), or the plethora of the

SEI’s CMM variations. Even CMM-Based Assessments for Internal Process Improvement (CBA-IPIs)

and Software Capability Evaluations (SCEs) are considered SPI strategies by some. What about

BOOTSTRAP, Trillium, SPRM, and a virtual constellation of various proprietary methods? Yes, it would

really be something if there were quantitative costs and benefits available and associated with every SPI

strategy mentioned here.

There were several major contributions made by this study, an extensible framework and Methodology

that can be populated with higher fidelity economic data, and some rather suprising economic results for

SPI strategies such as PSP, Inspection, and Test. The PSP was initially only considered to be a minor

player that would be overshadowed by SPI strategy legends such as Clean Room, Defect Prevention, and

Inspection. However, the economic advantages of PSP proved to be far too overwhelming against the

seven classical SPI strategies selected for comparative analysis, Clean Room, Reuse, Defect Prevention,

Inspection, Test, CMM, and ISO 9000. In addition, this study continued to advance the tri-fold theoretical

taxonomy and classification of SPI strategies, Vertical Life Cycle, Vertical Process, and Indefinite.

A DACS State-Of-The-Art Report 183

Results of Data Analysis

See the Methodology and Data Analysis for detailed economic analyses of the costs and benefits of the

eight SPI strategies, PSP, Clean Room, Reuse, Defect Prevention, Inspection, Test, CMM, and ISO 9000,

as well as the three SPI categories, Vertical Life Cycle, Vertical Process, and Indefinite. This section will

attempt to directly translate the economic and data analyses into the conceptual terms Good, Average, and

Poor. The technique for making this conceptual translation was to divide the range of values into three

parts, and assign the term Poor if the value fell in the first third, Average if the value fell in the second

third, and Good if the value fell in the last third. This conceptual translation was based directly upon

normalized economic values and was not arbitrarily or qualitatively assigned.

Table 109 illustrates that the normalized economic values for the PSP fell into the upper third of ranges

when compared to the other seven SPI strategies. Clean Room’s costs also fell into the upper third of

ranges, but its benefits fell into the lower third of ranges when compared to the PSP. Reuse, Defect

Prevention, Inspection, Test, CMM, and ISO 9000 faired similarly to Clean Room when compared to the

PSP. This graph indicates relative parity among the costs, but a minimum 3:1 advantage for PSP benefits

over the benefits of the other seven SPI strategies.

Since relative parity exists among the costs of the eight SPI strategies, cost data were factored out for

further analysis and summarization. The PSP benefits overshadowed the benefits of the other seven SPI

strategies, reducing and eliminating differentiation among them. Therefore, PSP data were also factored

out for further analysis and summarization. Table 110 illustrates the benefits of the seven worst

performing SPI strategies, Clean Room, Reuse, Defect Prevention, Inspection, Test, CMM, and ISO 9000.

Table 109: Comparative Summary of Eight Strategies

PSP Cleanroom Reuse Prevent Inspect Test CMM ISO

Breakeven Hours Good Good Good Good Good Good Average Good

Training Hours/Person Good Good Poor Good Good Good Good Good

Training Cost/Person Good Good Poor Good Good Good Good Good

Effort (Hours) Good Good Good Good Good Good Average Good

Cycle Time Reduction Good Poor Poor Poor Poor Poor Poor Poor

Productivity Increase Good Poor Poor Poor Poor Poor Poor Poor

Quality Increase Good Poor Poor Poor Poor Poor Poor Poor

Return-on-Investment Good Poor Poor Poor Poor Poor Poor Poor

Table 110: Comparative Summary of Strategies (Part I)

Cleanroom Reuse Prevent Inspect Test CMM ISO

Cycle Time Reduction Poor Poor Poor Average Average Poor Poor

Productivity Increase Average Poor Poor Average Average Poor Poor

Quality Increase Good Poor Poor Poor Poor Poor Poor

Return-on-Investment Poor Poor Average Good Poor Poor Poor

Using Cost Benefit Analysis to Develop SPI Strategies184

In this analysis, Clean Room yields an average Productivity Increase and a good Quality Increase when

compared to the other six worst performing SPI strategies. Reuse yields poor Cycle Time Reduction,

Productivity Increase, Quality Increase, and Return-on-Investment when compared against this same set.

Defect Prevention only seems to yield an average result for Return-on-Investment, one of the only SPI

strategies to do so in this set. Inspection yields average results for Cycle Time Reduction and Productivity

Increase, surprisingly yields poor for Quality Increase, and yields the highest value for Return-on-

Investment in this set. Test also surprisingly yields average results for Cycle Time Reduction and

Productivity Increase. CMM and ISO 9000 yield only poor results among the seven worst performing SPI

strategies. Once again, the Clean Room and Inspection results overshadow the results of the other five SPI

strategies, necessitating further analysis of the poorest performing SPI strategies, Reuse, Defect

Prevention, Test, CMM, and ISO 9000 (as shown in Table 111).

Table 112: Comparative Summary of Categories

Vertical Life Vertical Indefinite

Cycle Process

Breakeven Hours Good Good Poor

Training Hours/Person Average Good Good

Training Cost/Person Average Good Good

Effort (Hours) Good Good Poor

Cycle Time Reduction Good Poor Poor

Productivity Increase Good Poor Poor

Quality Increase Good Average Average

Return-on-Investment Good Average Average

Table 111: Comparative Summary of Strategies (Part II)

Reuse Prevent Test CMM ISO

Cycle Time Reduction Poor Poor Average Poor Poor

Productivity Increase Poor Poor Average Poor Poor

Quality Increase Poor Poor Poor Poor Average

Return-on-Investment Poor Good Poor Poor Poor

Unfortunately, since the conceptual terms of Poor, Average, and Good were based on the total range of

values, Defect Prevention scored very high for Return-on-Investment, pushing the results for the five

poorest performing SPI strategies downward. Reuse scored poorly for all criterion in this analysis. Defect

Prevention scored poor for three out of four criterion values. Test continued to score average for Cycle

Time Reduction and Productivity Increase. CMM, like Reuse, score poor for all criterion. And, ISO 9000

scored average for Quality Increase, and poor against the other three criteria, when compared to the five

poorest SPI strategies.

Finally, the Vertical Life Cycle SPI category yields good and average results for all criteria. The Vertical

Process SPI category yields good and average for all criteria, except Quality Increase and Productivity

Increase. And, the Indefinite SPI category yields good and average for training costs, as well as Quality

Increase and Return-on-Investment.

A DACS State-Of-The-Art Report 185

Outcome of Hypotheses

While, this study doesn’t necessarily employ a hypothesis-based methodology and approach, it is none-

the-less interesting to qualitatively evaluate the strategic hypotheses established in the Introduction. The
first two strategic hypotheses deal with qualitative perceptions associated with the SPI field. The third,

fourth, and fifth strategic hypotheses deal qualitatively with the notion that multiple SPI strategies and

categories actually exist, attempting to point out the simple notion that there is more than one approach to
SPI. The last hypothesis dealt with the identification of criteria for evaluating SPI strategies.

The first hypothesis (emerging definition of SPI)

SPI is a discipline of defining, measuring, and changing software management and development

processes and operations in order to increase productivity, increase quality, reduce cycle times, reduce
costs, increase profitability, and increase market competitiveness. Table 1 indicates that SPI includes

perfecting processes, adding value, adding quality, increasing productivity, increasing speed, increasing

efficiency, reducing cost, providing advantages, profiting, increasing flexibility, downsizing, substituting
better processes, using methods, defining processes, measuring processes, simplifying processes, adding

processes, and incremental change.

The second hypothesis (existence of multiple SPI strategies)

Prevalent SPI strategies such as the PSP, Clean Room, Reuse, Defect Prevention, Inspection, Test, CMM,
and ISO 9000 exist and are widely in use. Other mainstream SPI strategies include TSP, ODC, SPICE,

IEEE 12207, CM, MBQNA, Experience Factory, GQM, SPC, Product Line Management, IDEAL, other

CMM variations, CBA-IPI, SCE, BOOTSTRAP, Trillium, and SPRM.

The third hypothesis (SPI strategies exhibit favorable costs and benefits)

SPI strategies such as the PSP, Clean Room, Reuse, Defect Prevention, Inspection, Test, CMM, and ISO

9000 yield quantitatively favorable results such as increased productivity, increased quality, reduced cycle

time, and favorable return-on-investment. The eight SPI strategies analyzed in this study yield Cycle Time
Reductions of 23.58X, Productivity Increases of 16.75X, Quality Increases of 42.09X, and Return-on-

Investments of 193:1.

The fourth hypothesis (existence of multiple SPI categories)

 SPI categories exist such as Vertical Life Cycle (PSP, Clean Room, and Reuse), Vertical Process (Defect
Prevention, Inspection, and Test), and Indefinite (CMM and ISO 9000). Other Vertical Life Cycle SPI

strategies include TSP, IEEE 12207, and Product Line Management. Other Vertical Process SPI strategies

include ODC, CM, and SPC. And, other Indefinite SPI strategies include SPICE, MBQNA, Experience
Factory, GQM, IDEAL, other CMM variations, CBA-IPI, SCE, BOOTSTRAP, Trillium, and SPRM.

The fifth hypothesis (SPI categories exhibit distinct costs and benefits)

Vertical Life Cycle SPI strategies are 1.36X better than Vertical Process and 2.15X better than Indefinite.

Vertical Process SPI strategies are 1.58X better than Indefinite. Cycle Time Reduction, Productivity
Increase, Quality Increase, and Return-on-Investment are 57X, 39X, 100X, and 440:1 for Vertical Life

Cycle, 4X, 5X, 7X, and 72:1 for Vertical Process, and 2X, 2X, 9X, and 5:1 for Indefinite.

The sixth hypothesis (existence of criteria for evaluating SPI strategies)

Criteria for evaluating SPI strategies include Breakeven Hours, Training Hours/Person, Training Cost/
Person, Effort (Hours), Cycle Time Reduction, Productivity Increase, Quality Increase, and Return-on-

Investment. 72 scholarly surveys identified by this study organized 487 individual software metrics into

14 broad metrics classes such as Productivity, Design, Quality, Effort, Cycle Time, Size, Cost, Change,
Customer, Performance, ROI, and Reuse.

Using Cost Benefit Analysis to Develop SPI Strategies186

Reliability and Validity

According to Kan (1995), reliability deals with the predictive accuracy of a metric, model, or method, and

validity deals with whether the predicted value is correct. Reliability and validity became of paramount

concern as the Methodology was being designed and constructed. This study addresses a very serious

issue, cost and benefits associated with software management and development. The software industry is

a critically and strategically important as the world moves into the 21st century. Therefore, reliability and

validity of the metrics, models, methods, and results of this study have to be dealt with responsibly. We

will attempt to do so here, though reliability and validity were summarily dealt with throughout the

Methodology, as necessary.

First, let’s address the design of the Methodology. Kan (1995) firmly asserts that the Defect Removal

Model is good for software quality management, but not accurate for predicting reliability. Many of the

costs and benefits throughout this study were based on empirical relationships established by the Defect

Removal Model. Therefore, the predictive nature of the Methodology should not be taken for granted. The

bottom line results of this study were for gross analytical purposes, and are probably not good for

concisely predicting the costs and benefits associated with any one application of the aforementioned SPI

strategies. In other words, don’t create an operational budget from the results of this study. The Cost and

Benefit Data used to drive the final analyses were not always related and correlated to one another,

therefore, not exhibiting a direct cause and effect relationship. In other words, applying a specified

amount of cost used in this study may not yield the associated benefit. The Return-on-Investment Model,

while employing valid mathematical methods and relationships, only took training costs into account,

ignoring the much reported high-costs of organizational and cultural change. In other words, it may take

more than a few hours of training to employ and institutionalize the SPI strategies analyzed by this study.

The Break Even Point Model, like the Return-on-Investment Model doesn’t account for the high-costs of

organizational and cultural change. Ironically, the Clean Room and Reuse sources, which had unusually

high costs may have actually done so. The Costs and Benefits of Alternatives should also be used and

interpreted with caution. While some of the data is believed to be very authoritative, particularly for PSP

and Inspections, some data is very questionable, especially for CMM and ISO 9000. This isn’t to say that

the PSP analysis is highly reliable, as there are intermittent sources reporting the high cost of

organizational and cultural change associated with this SPI strategy.

As alluded to here and throughout the Methodology, the cost of training, implementation, and

institutionalization seems to be the least understood, or at least analyzed, element in this study. While, SPI

strategy training and implementation costs may make an excellent topic for future research and analysis,

these costs may be a large suspect source of reliability and validity associated with this study. As reported

earlier, Return-on-Investment and Breakeven Hours were based on authoritative costs to train a single

individual, not an entire organization. When using this study to aid in software organizational design and

SPI strategy rollout, carefully analyze and estimate the cost to train all strategic personnel, and then

reapply the ROI and break even models suggested by this study. Doing so will yield a more realistic

estimate, which once again, should only be used as a guideline, not an absolute. The Methodology used a

sample software defect population size associated with medium to large-scale software development.

Modern website development tends to deal with small software product sizes and extremely small defect

populations, which would require careful reinterpretation of ROI and Breakeven Hours. However, if your

Internet strategy involves small numbers of engineers, this study may actually prove very useful for cost

and benefit analysis, but not necessarily cost prediction.

A DACS State-Of-The-Art Report 187

Future Research

This study has revealed several areas for future research, developing a dynamically scaleable Return-on-

Investment Model, continuing to populate the models in the Methodology with more authoritative and

accurate cost and benefit data, accurately modeling training and implementation costs, and including

exciting new SPI strategies.

Scaleable Return-on-Investment Model

Two interrelated items for future research in this area include automating the Methodology, so that cost

and benefit data may be automatically entered and reports generated, and allowing the user to input a

variety of factors such as organizational size, product size, efficiencies, and time-scales.

Continuing Cost and Benefit Data Population

Now that our awareness has been heightened to strategic cost and benefit factors associated with SPI

strategies and a highly structured framework has been designed to capture, classify, and analyze them,

increasingly frequent reports of cost and benefit data should be input into the models.

Accurately Modeling Training and Implementation Costs

Perhaps, additional criteria need to be added, such as the costs associated with not only training

employees in the various SPI strategies, but the costs associated with organizational and cultural

adaptation, change, and penetration.

Analyzing Emerging Strategies

This will probably be one of the most fruitful areas for future research. Quantitative benefits for the TSP

are rapidly emerging and should’ve been included in this study as a Vertical Life Cycle. In addition, ODC

is reported to be orders of magnitude more effective than Defect Prevention, and should’ve been included

in this study as a Vertical Process. More and more data is emerging associated with using the CMM,

CBA-IPIs, SCEs, and SPICE. The methodology should include these methods as Indefinite SPI strategies.

Using Cost Benefit Analysis to Develop SPI Strategies188

Recommendations

The recommendations are primarily three-fold, and were not anticipated in advance of initiating this

study, carefully consider the Personal Software Process (PSP), Software Inspection Process, and Software

Test Process, as critically strategic Software Process Improvement (SPI) strategies. The reason these

recommendations weren’t expected to be the final results, was because the PSP wasn’t expected to

perform so well, Inspections were perceived to be obsolete, and Testing was believed to be far too

inefficient.

Personal Software Process (PSP)

The PSP yields phenomenal results for Cycle Time Reduction, Productivity Increase, Quality Increase,

and especially Return-on-Investment, such as 164X, 110X, 254X, and 1,290:1. Cost and benefit data for

the PSP are by far the most plentiful, robust, and detailed than for any SPI strategy identified by this

study.

Software Inspection Process

Inspections yield excellent results for Cycle Time Reduction, Productivity Increase, Quality Increase, and

once again especially Return-on-Investment, such as 6X, 6X, 9X, and 133:1. Inspections are widely

known and respected techniques that will continue to prove viable in the 21st century. Cost and benefit

data for Inspection is plentiful and very authoritative.

Software Test Process

Test yields respectable results for Cycle Time Reduction, Productivity Increase, Quality Increase, and

Return-on-Investment, such as 6X, 6X, 6X, and 9:1. Reluctantly speaking, Test may be a fruitful area for

focus and improvement, as Test is a traditional and widely employed technique in use throughout the

world. While, admittedly Test processes are rather immature, or at least they are in use, they may be

excellent candidates for immediate improvement. PSP and Inspections would require substantially more

cultural change and commitment than Test.

A DACS State-Of-The-Art Report 189

References

American Society for Quality Control (1999/n.d.). ANSI ASC Z-1 committee on quality assurance

answers the most frequently asked questions about the ISO 9000 (ANSI/ASQ Q9000) series [WWW

document]. URL http://www.asq.org/standcert/iso.html

Arditti, E. (1999/n.d.). Benefits of ISO 9000 [WWW document]. URL http://www.geocities.com/Eureka/
Enterprises/9587/benefits1.htm

Armstrong, R. V. (1999/n.d.). ISO 9000 & QS 9000 seminar training [WWW document]. URL

http://www.rvarmstrong.com

Arthur, L. J. (1997). Quantum improvements in software system quality. Communications of the ACM,

40(6), 46-52.

Asada, M., & Yan, P. M. (1998). Strengthening software quality assurance. Hewlett-Packard Journal,

49(2), 89-97.

Austin, R. D., & Paulish, D. J. (1993). A survey of commonly applied methods for software process

improvement. Pittsburg, PA: Carnegie-Mellon University. (NTIS No. ADA 278595)

Barnard, J., & Price, A. (1994). Managing code inspection information. IEEE Software, 11(2), 59-69.

Bassin, K. A., Kratschmer, T., & Santhanam, P. (1998). Evaluating software development objectively.

IEEE Software, 15(6), 66-74.

Bauer, R. A., Collar, E., & Tang, V. (1992). The silverlake project: Transformation at IBM. New York,

NY: Oxford University Press.

Bhandari, I., Halliday, M. J., Chaar, J., Chillarege, R., Jones, K., Atkinson, J. S., Lepori-Costello, C.,

Jasper, P. Y., Tarver, E. D., Lewis, C. C., & Yonezawa, M. (1994). In-process improvement through defect

data interpretation. IBM Systems Journal, 33(1), 182-214.

Billings, C., Clifton, J., Kolkhorst, B., Lee, E., & Wingert, W. B. (1994). Journey to a mature software

process. IBM Systems Journal, 33(1), 4-19.

Binder, R. V. (1997). Can a manufacturing quality model work for software? IEEE Software, 14(5), 101-

102, 105.

Blackburn, M. R. (1998). Using models for test generation and analysis. Proceedings of the IEEE Digital

Avionics System Conference, USA, 1-8.

Braham, C. G. (Ed.). (1996). Webster’s Dictionary (2nd ed.). New York, NY: Random House.

Briand, L. C., El Emam, K., & Freimut, B. (1998). A comparison and integration of capture-recapture

models and the detection profile method (IESE-Report 025.98/E). Kaiserslautern, Germany: University of

Kaiserslautern, Fraunhofer-Institute for Experimental Software Engineering.

Briand, L. C., El Emam, K., Freimut, B., & Laitenberger, O. (1997). Quantitative evaluation of capture

recapture models to control software inspections (IESE-Report 053.97/E). Kaiserslautern, Germany:

University of Kaiserslautern, Fraunhofer-Institute for Experimental Software Engineering.

http://www.asq.org/standcert/iso.html
http://www.geocities.com/Eureka/Enterprises/9587/benefits1.htm
http://www.geocities.com/Eureka/Enterprises/9587/benefits1.htm

Using Cost Benefit Analysis to Develop SPI Strategies190

Briand, L. C., El Emam, K., Freimut, B., & Laitenberger, O. (1998). A comprehensive evaluation of

capture-recapture models for estimating software defect content (IESE-Report 068.98/E). Kaiserslautern,

Germany: University of Kaiserslautern, Fraunhofer-Institute for Experimental Software Engineering.

Burnstein, I., Homyen, A., Grom, R., & Carlson, C. R. (1998). A model to assess testing process maturity.

Crosstalk, 11(11), 26-30.

Burnstein, I., Suwannasart, T., & Carlson, C. R. (1996a). Developing a testing maturity model: Part I.

Crosstalk, 9(8), 21-24.

Burnstein, I., Suwannasart, T., & Carlson, C. R. (1996b). Developing a testing maturity model: Part II.

Crosstalk, 9(9), 19-26.

Burr, A., & Owen, M. (1996). Statistical methods for software quality: Using metrics for process

improvement. Boston, MA: International Thomson Publishing.

Carnegie Mellon University (1999/n.d.). Personal software process [WWW document].

URL http://www.distance.cmu.edu/info/courses/psp.html

Chillarege, R., Bhandari, I. S., Chaar, J. K., Halliday, M. J., Moebus, D. S., Ray, B. K., & Wong, M. Y.

(1992). Orthogonal defect classification—A concept for in-process measurements. IEEE Transactions on

Software Engineering, 18(11), 943-956.

Cleanroom Software Engineering (1996/n.d.). An introduction to cleanroom software engineering for

managers [WWW document]. URL http://www.csn.net/cleansoft/mgrguide.html

Coase, R. H. (1994). Essays on economics and economists. Chicago, IL: University of Chicago Press.

Conte, S. D., Dunsmore, H. E., Shen, V. Y. (1986). Software engineering metrics and models. Menlo Park,

CA: Benjamin/Cummings.

Cosgriff, P. W. (1999a). The journey to CMM level 5: A time line. Crosstalk, 12(5), 5-6, 30.

Cosgriff, P. W. (1999b). The right things for the right reasons: Lessons learned achieving CMM level 5.

Crosstalk, 12(5), 16-20.

Crosby, P. B. (1979). Quality is free. New York, NY: McGraw-Hill.

Cusumano, M. A. (1991). Japan’s software factories: A challenge to U.S. management. New York, NY:

Oxford University Press.

Cusumano, M. A., & Selby, R. W. (1995). Microsoft secrets: How the world’s most powerful software

company creates technology, shapes markets, and manages people. New York, NY: The Free Press.

Cusumano, M. A., & Selby, R. W. (1997). How Microsoft builds software. Communications of the ACM,

40(6), 53-61.

Cusumano, M. A., & Yoffie, D. B. (1998). Competing on internet time: Lessons from netscape and its

battle with microsoft. New York, NY: The Free Press.

Daskalantonakis, M. K. (1992). A practical view of software measurement and implementation

experiences within motorola. IEEE Transactions on Software Engineering, 18(11), 998-1010.

A DACS State-Of-The-Art Report 191

Davenport, T. H. (1993). Process innovation: Reengineering work through information technology.

Boston, MA: Harvard Business School Press.

Davidson, W. H. (1993). Beyond re-engineering: The three phases of business transformation. IBM

Systems Journal, 32(1), 65-79.

Diaz, M., & Sligo, J. (1997). How software process improvement helped motorola. IEEE Software, 14(5),

75-81.

Downes, L., & Mui, C. (1998). Unleashing the killer app: Digital strategies for market dominance.

Boston, MA: Harvard Business School Press.

Ehrlich. W., Prasanna, B., Stampfel, J., & Wu, J. (1993). Determining the cost of a stop-test decision.

IEEE Software, 10(2), 33-42.

El Emam, K., & Briand, L. C. (1997). Costs and benefits of software process improvcment (IESE-Report

047.97/E). Kaiserslautern, Germany: University of Kaiserslautern, Fraunhofer-Institute for Experimental

Software Engineering.

Fagan, M. E. (1976). Design and code inspections to reduce errors in program development. IBM

Systems Journal, 12(7), 744-751.

Fagan, M. E. (1986). Advances in software inspections. IEEE Transactions on Software Engineering,

15(3), 182-211.

Farren, D., & Ambler, T. (1997). The economics of system-level testing. IEEE Design & Test of

Computers, 14(3), 51-58.

Ferguson, P., Humphrey, W. S., Khajenoori, S., Macke, S., & Matvya, A. (1997). Results of applying the

personal software process. IEEE Computer, 30(5), 24-31.

Florac, W. A., & Carleton, A. D. (1999). Measuring the software process: Statistical process control for

software process improvement. Reading, MA: Addison-Wesley.

Fowler Jr., K. M. (1997). SEI CMM level 5: A practitioner’s perspective. Crosstalk, 10(9), 10-13.

Gale, J. L., Tirso, J. R., & Burchfield, C. A. (1990). Experiences with defect prevention. IBM Systems

Journal, 29(1), 33-43.

Garrison, R. H., & Noreen, E. W. (1997a). Systems design: Activity-based costing and quality

management. In Managerial accounting (pp. 178-237). Boston, MA: McGraw-Hill.

Garrison, R. H., & Noreen, E. W. (1997b). Cost-volume-profit relationships. In Managerial accounting

(pp. 278-323). Boston, MA: McGraw-Hill.

Garver, R. (1999/n.d.). Are there benefits to ISO 9000 registration? More importantly, does superior

service really matter? [WWW document]. URL http://www.distribution-solutions.com/newpage7.htm

Gilb, T., & Graham, D. (1993). Software inspection. Reading, MA: Addison-Wesley.

Grady, R. B. (1997). Successful software process improvement. Saddle River, NH: Prentice Hall.

http://www.distribution-solutions.com/newpage7.htm

Using Cost Benefit Analysis to Develop SPI Strategies192

Grady, R. B., & Caswell, D. L. (1986). Software metrics: Establishing a company-wide program.

Englewood Cliffs, NJ: Prentice Hall.

Grady, R. B., & Van Slack, T. (1994). Key lessons in achieving widespread inspection use. IEEE

Software, 11(4), 46-57.

Graham, D. (n.d./1999). Grove consultants public courses and events [WWW document].

URL http://www.grove.co.uk

Haley, T. J. (1996). Software process improvement at raytheon. IEEE Software, 13(6), 33-41.

Hammer, M. (1996). Beyond reengineering: How the process-centered organization is changing our work

and our lives. New York, NY: Harper Business.

Harrington, H. J. (1991). Business process improvement: The breakthrough strategy for total quality,

productivity, and competitiveness. New York, NY: McGraw Hill.

Harrington, H. J. (1995). Total improvement management: The next generation in performance

improvement. New York, NY: McGraw Hill.

Haskell, J., Decker, W., & McGarry, F. (1997). Experiences with CMM and ISO 9001 benchmarks.

Proceedings of the Twenty-Second Annual Software Engineering Workshop, USA, 157-176.

Hayes, W., & Over, J. W. (1997). The personal software process (PSP): An empirical study of the impact

of PSP on individual engineers (CMU/SEI-97-TR-001). Pittsburg, PA: Software Engineering Institute.

Herbsleb, J., Carleton, A., Rozum, J., Siegel, J., & Zubrow, D. (1994). Benefits of CMM-based software

process improvement: Initial results (CMU/SEI-94-TR-013). Pittsburg, PA: Software Engineering

Institute.

Hewlett, M. (1999/n.d.). ISO 9000: The benefits of ISO 9000 registration and quality system requirements

[WWW document]. URL http://www.subnet.co.uk/quest/requirements.html

Humphrey, W. S. (1987). A method for assessing the software engineering capability of contractors

(CMU/SEI-87-TR-23). Pittsburg, PA: Software Engineering Institute.

Humphrey, W. S. (1989). Managing the software process. Reading, MA: Addison-Wesley.

Humphrey, W. S. (1995). A discipline for software engineering. Reading, MA: Addison-Wesley.

Humphrey, W. S. (1996). Using a defined and measured personal software process. IEEE Software, 13(3),

77-88.

Humphrey, W. S. (1997). Introduction to the personal software process. Reading, MA: Addison-Wesley.

Humphrey, W. S. (1998a). Three dimensions of process improvement part II: The personal process.

Crosstalk, 11(3), 13-15.

Humphrey, W. S. (1998b). Three dimensions of process improvement part III: The team process.

Crosstalk, 11(4), 14-17.

Humphrey, W. S. (2000). Introduction to the team software process. Reading, MA: Addison-Wesley.

http://www.grove.co.uk/
http://www.subnet.co.uk/quest/requirements.html

A DACS State-Of-The-Art Report 193

IEEE guide for software verification and validation plans (IEEE Std 1059-1993). New York, NY: Institute

of Electrical and Electronic Engineers, Inc.

IEEE standard for information technology—Software life cycle processes (IEEE Std 12107.0-1996). New

York, NY: Institute of Electrical and Electronic Engineers, Inc.

IEEE standard for software reviews and audits (IEEE Std 1028-1988). New York, NY: Institute of

Electrical and Electronic Engineers, Inc.

IEEE standard for software verification and validation plans (IEEE Std 1012-1986). New York, NY:

Institute of Electrical and Electronic Engineers, Inc.

IEEE standard glossary of software engineering terminology (IEEE Std 610.12-1990). New York, NY:

Institute of Electrical and Electronic Engineers, Inc.

IEEE trial use standard, standard for information technology software life cycle processes: Software

development, acquirer-supplier agreement (IEEE J-Std 016-1995). New York, NY: Institute of Electrical

and Electronic Engineers, Inc.

Johnson, P. L. (1999/n.d.). ISO 9000: A to Z complete implementation program [WWW document]. URL

http://www.pji.com/atoz.htm

Johnson, P. M., & Disney, A. M. (1998). The personal software process: A cautionary case study. IEEE

Software, 15(6), 85-88.

Jones, C. (1996). The economics of software process improvement. IEEE Computer, 29(1), 95-97.

Jones, C. (1997a). Activity-based costs: Polishing the software process. Software Development, 47-54.

Jones, C. (1997b). Software quality: Analysis and guidelines for success. Boston, MA: International

Thomson Publishing.

Jones, C. (1998). Estimating software costs. New York: NY: McGraw-Hill.

Jones, C. L. (1985). A process-integrated approach to defect prevention. IBM Systems Journal, 24(2),

150-165.

Kajihara, J., Amamiya, G, & Saya, T. (1993). Learning from bugs. IEEE Software, 10(5), 46-54.

Kan, S. H. (1991). Modeling and software development quality. IBM Systems Journal, 30(3), 351-362.

Kan, S. H. (1995). Metrics and models in software quality engineering. Reading, MA: Addison-Wesley.

Kan, S. H., Basili, V. R., & Shapiro, L. N. (1994). Software quality: An overview from the perspective of

total quality management. IBM Systems Journal, 33(1), 4-19.

Kan, S. H., Dull, S. D., Amundson, D. N., Lindner, R. J., & Hedger, R. J. (1994). AS/400 software quality

management. IBM Systems Journal, 33(1), 62-88.

Kaplan, C., Clark, R., & Tang, V. (1995). Secrets of software quality: 40 innovations from IBM. New

York, NY: McGraw-Hill.

http://www.pji.com/atoz.htm

Using Cost Benefit Analysis to Develop SPI Strategies194

Kettinger, W. J., Teng, J. T. C., & Guha, S. (1996). Business process change: A study of methodologies,

techniques, and tools. MIS Quarterly, 21(1), 55-80.

Latino, R. J., & Latino, K. C. (1999). Root cause analysis: Improving performance for bottom line results.

Boca Raton, FL: CRC Press.

Lauesen, S., & Younessi, H. (1998). Is software quality visible in the code? IEEE Software, 15(4), 69-73.

Lim, W. C. (1998). Managing software reuse: A comprehensive guide to strategically reengineering the

organization for reusable components. Upper Saddle River, NJ: Prentice Hall.

Maurer, R. (1996). Beyond the wall of resistance: Unconventional strategies that build support for change.

Austin, TX: Bard Books.

Mays, R. G., Jones, C. L., Holloway, G. J., & Studinski, D. P. (1990). Experiences with defect prevention.

IBM Systems Journal, 29(1), 4-32.

McConnell, S. (1996). Rapid development: Taming wild software schedules. Redmond, WA: Microsoft

Press.

McGibbon, T. (1996). A business case for software process improvement (Contract Number F30602-92-

C-0158). Rome, NY: Air Force Research Laboratory—Information Directorate (AFRL/IF), Data and

Analysis Center for Software (DACS).

McGibbon, T. (1997). Modern empirical cost and schedule estimation (Contract Number F30602-89-C-

0082). Rome, NY: Air Force Research Laboratory—Information Directorate (AFRL/IF), Data and

Analysis Center for Software (DACS).

McKechnie, J. L. (Ed.). (1983). Webster’s new twentieth century dictionary of the English language (2nd

ed.). New York, NY: Prentice Hall.

Mendonca, G. G., Basili, V. R., Bhandari, I. S., & Dawson, J. (1998). An approach to improving existing

measurement frameworks. IBM Systems Journal, 37(4), 484-501.

NSF-ISR (1999/n.d.). ISO 9000 registration [WWW document].

URL http://www.nsf-isr.org/html/iso_9000.html

Oldham, L. G, Putman, D. B, Peterson, M., Rudd, B., & Tjoland, K. (1999). Benefits realized from

climbing the CMM ladder. Crosstalk, 12(5), 7-10.

Paulk, M. C., Weber, C. V., Curtis, B., & Chrissis, M. B. (1995). The capability maturity model:

Guidelines for improving the software process. Reading, MA: Addison-Wesley.

Poulin, J. S. (1997). Measuring software reuse: Principles, practices, and economic models. Reading, MA:

Addison Wesley.

Pressman, R. S. (1997). Software engineering: A practitioner’s approach. New York, NY: McGraw-Hill.

Prowell, S. J., Trammell, C. J., Linger, R. C., & Poor, J. H.. (1999). Clean room software engineering:

Technology and process. Reading, MA: Addison-Wesley.

http://www.nsf-isr.org/html/iso_9000.html

A DACS State-Of-The-Art Report 195

Putnam, L. H. (1993/n.d.). The economic value of moving up the SEI scale [WWW document]. URL

http://www.qualitaet.com/seipaper.html

Radice, R. A., Harding, J. T., Munnis, P. E., & Phillips, R. W. (1985). A programming process study. IBM

Systems Journal, 24(2), 91-101.

Radice, R. A., Roth, N. K., O’Hara, Jr., A. C., Ciarfella, W. A. (1985). A programming process

architecture. IBM Systems Journal, 24(2), 79-90.

Reid, R. H. (1997). Architects of the web: 1,000 days that build the future of business. New York, NY:

John Wiley & Sons.

Reinertsen, D. G. (1997). Managing the design factory: A product developer’s toolkit. New York, NY: The

Free Press.

Rice, R. W. (n.d./1999). Randy rice’s software testing page: Training courses and workshops [WWW

document]. URL http://www.riceconsulting.com

Rico, D. F. (n.d./1993). Software inspection process cost model [WWW document]. URL http://

davidfrico.com/sipcost.pdf

Rico, D. F. (n.d./1996). Software inspection process metrics [WWW document]. URL http://

davidfrico.com/ipmov.pdf

Rico, D. F. (n.d./1998). Software process improvement: Impacting the bottom line by using powerful

“solutions” [WWW document]. URL http://davidfrico.com/spipaper.html

Rico, D. F. (n.d./1999). V&V lifecycle methodologies [WWW document].

URL http://davidfrico.com/vvpaper.html

Roberson, D. (1999/n.d.). Benefits of ISO 9000 [WWW document].

URL http://www.isocenter.com/9000/benefits.html

Rosenberg, L. H., Sheppard, S. B., & Butler, S. A. (1994). Software process assessment (SPA). Third

International Symposium on Space Mission Operations and Ground Data Systems, USA.

Russell, G. W. (1991). Experience with inspection in ultralarge-scale developments. IEEE Software, 8(1),

25-31.

Russo, C. W. R. (1999/n.d.). Charro training and education products and seminars [WWW document].

URL http://www.charropubs.com/

Schafer, W., Prieto-diaz, R., & Matsumoto, M. (1980). Software reusability. New York, NY: Ellis

Horwood.

Schuyler, J. R. (1996). Decision analysis in projects: Learn to make faster, more confident decisions.

Upper Darby, PA: Project Management Institute.

Siy, H. P. (1996). Identifying the mechanisms driving code inspection costs and benefits. Unpublished

doctoral dissertation, University of Maryland, College Park.

http://www.qualitaet.com/seipaper.html
http://www.riceconsulting.com/
http://davidfrico.com/sipcost.pdf
http://davidfrico.com/sipcost.pdf
http://davidfrico.com/ipmov.pdf
http://davidfrico.com/ipmov.pdf
http://davidfrico.com/spipaper.html
http://davidfrico.com/vvpaper.html
http://www.isocenter.com/9000/benefits.html
http://www.charropubs.com/

Using Cost Benefit Analysis to Develop SPI Strategies196

Slywotzky, A. J., Morrison, D. J., Moser, T., Mundt, K. A., & Quella, J. A. (1999). Profit patterns: 30

ways to anticipate and profit from strategic forces reshaping your business. New York, NY: Times

Business.

Smith, B. (1993). Making war on defects. IEEE Spectrum, 30(9), 43-47.

Software Engineering Institute. (1998). 1998-1999 SEI Public Courses [Brochure]. Pittsburgh, PA: Linda

Shooer.

Software Engineering Institute (1999, March). Process maturity profile of the software community: 1998

year end update [WWW document]. URL http://www.sei.cmu.edu/activities/sema/pdf/1999mar.pdf

Sommerville, I. (1997). Software engineering. Reading, MA: Addison-Wesley.

Sulack, R. A., Lindner, R. J., & Dietz, D. N. (1989). A new development rhythm for AS/400 software.

IBM Systems Journal, 28(3), 386-406.

Szymanski, D. J. & Neff, T. D. (1996). Defining software process improvement. Crosstalk, 9(2), 29-30.

Tingey, M. O. (1997). Comparing ISO 9000, malcolm baldrige, and the SEI CMM for software: A

reference and selection guide. Upper Saddle River, NJ: Prentice Hall.

Turban, E., & Meredith, J. R. (1994). Fundamentals of management science (6th ed.). Boston, MA:

McGraw Hill.

Vu, J. D. (1998/n.d.). Software process improvement: A business case [WWW document]. URL http://

davidfrico.com/boeingspi.pdf

Wang, Y., Court, I., Ross, M., Staples, G., King, G., & Dorling, A. (1997a). Quantitative analysis of

compatibility and correlation of the current SPA/SPI models. Proceedings of the 3rd IEEE International

Symposium on Software Engineering Standards (ISESS ’97), USA, 36-55.

Wang, Y., Court, I., Ross, M., Staples, G., King, G., & Dorling, A. (1997b). Quantitative evaluation of the

SPICE, CMM, ISO 9000 and BOOTSTRAP. Proceedings of the 3rd IEEE International Symposium on

Software Engineering Standards (ISESS ’97), USA, 57-68.

Wang, Y., King, G., Dorling, A., Patel, D., Court, J., Staples, G., & Ross, M. (1998). A worldwide survey

of base process activities towards software engineering process excellence. 1998 International Conference

on Software Engineering (ICSE ’98), Japan, 439-442.

Webb, D., & Humphrey, W. S. (1999). Using the TSP on the taskview project. Crosstalk, 12(2), 3-10.

Weller, E. F. (1993). Lessons from three years of inspection data. IEEE Software, 10(5), 38-45.

Wigle, G. B., & Yamamura, G. (1997). Practices of an SEI CMM level 5 SEPG. Crosstalk, 10(11), 19-22.

Yamamura, G., & Wigle, G. B. (1997). SEI CMM level 5: For the right reasons. Crosstalk, 10(8), 3-6.

Yamaura, T. (1998). How to design practical test cases. IEEE Software, 15(6), 30-36.

http://www.sei.cmu.edu/activities/sema/pdf/1999mar.pdf
http://davidfrico.com/boeingspi.pdf
http://davidfrico.com/boeingspi.pdf

